Menu Close

Find-local-minimum-of-function-H-x-34-3-2x-x-2-3x-1-




Question Number 148676 by bemath last updated on 30/Jul/21
Find local minimum of function   H(x)=((34)/(3+((2x)/(x^2 +3x+1)))) .
FindlocalminimumoffunctionH(x)=343+2xx2+3x+1.
Answered by EDWIN88 last updated on 30/Jul/21
H(x)=((34x^2 +102x+34)/(3x^2 +11x+3))  3x^2 h+11hx+3h=34x^2 +102x+34  (34−3h)x^2 +(102−11h)x+34−3h=0  Δ≥0  (102−11h)^2 −4(34−3h)(34−3h)≥0  10404−2244h+121h^2 −4(1156−204h+9h^2 )≥0  121h^2 −2244h+10404−4624+816h−36h^2 ≥0  85h^2 −1428h+5780≥0  (h−10)(5h−34)≥0  h≤ ((34)/5)∪ h≥10  H(x)_(min) = 10 when x=1
H(x)=34x2+102x+343x2+11x+33x2h+11hx+3h=34x2+102x+34(343h)x2+(10211h)x+343h=0Δ0(10211h)24(343h)(343h)0104042244h+121h24(1156204h+9h2)0121h22244h+104044624+816h36h2085h21428h+57800(h10)(5h34)0h345h10H(x)min=10whenx=1
Commented by EDWIN88 last updated on 30/Jul/21

Leave a Reply

Your email address will not be published. Required fields are marked *