Menu Close

Find-locus-of-point-P-from-which-tangents-PA-amp-PB-to-circles-x-2-y-2-a-2-and-x-2-y-2-b-2-respectively-are-perpendicular-




Question Number 47621 by rahul 19 last updated on 12/Nov/18
Find locus of point P from which  tangents PA & PB to circles x^2 +y^2 =a^2   and x^2 +y^2 =b^2  respectively are perpendicular.
FindlocusofpointPfromwhichtangentsPA&PBtocirclesx2+y2=a2andx2+y2=b2respectivelyareperpendicular.
Commented by rahul 19 last updated on 12/Nov/18
Ans→ x^2 +y^2 =a^2 +b^2 .
Ansx2+y2=a2+b2.
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Nov/18
tangent on x^2 +y^2 =a^2  from p(α,β) is  y−β=m(x−α)  y−mx+mα−β=0  distance from (0,0) is radius  ∣((0−0+mα−β)/( (√(1^2 +m^2 ))))∣=a  ((mα−β)/( (√(1+m^2 ))))=a  tangent  on x^2 +y^2 =b^2   y−β=−(1/m)(x−α)  my−mβ+x−α=0  ∣((−mβ−α)/( (√(1+m^2 ))))∣=b  ((mβ+α)/( (√(1+m^2 ))))=b  a^2 +b^2 =(((mα−β)^2 +(mβ+α)^2 )/(1+m^2 ))  a^2 +b^2 =((α^2 (1+m^2 )+β^2 (1+m^2 ))/((1+m^2 )))  a^2 +b^2 =α^2 +β^2   hence locus is  x^2 +y^2 =a^2 +b^2
tangentonx2+y2=a2fromp(α,β)isyβ=m(xα)ymx+mαβ=0distancefrom(0,0)isradius00+mαβ12+m2∣=amαβ1+m2=atangentonx2+y2=b2yβ=1m(xα)mymβ+xα=0mβα1+m2∣=bmβ+α1+m2=ba2+b2=(mαβ)2+(mβ+α)21+m2a2+b2=α2(1+m2)+β2(1+m2)(1+m2)a2+b2=α2+β2hencelocusisx2+y2=a2+b2
Commented by rahul 19 last updated on 13/Nov/18
thanks sir ����

Leave a Reply

Your email address will not be published. Required fields are marked *