Menu Close

find-Lourant-series-of-f-z-1-1-z-z-2-0-lt-z-1-lt-1-




Question Number 144414 by mohammad17 last updated on 25/Jun/21
find Lourant series of     f(z)=(1/(1−z+z^2 ))    ,0<∣z−1∣<1
findLourantseriesoff(z)=11z+z2,0<∣z1∣<1
Answered by Olaf_Thorendsen last updated on 25/Jun/21
Laurent serie of f in a :  f(z) = Σ_(n=0) ^∞ a_n (z−a)^n   f(z) = (1/(1−z+z^2 ))  f(z) = (1/((3/4)+(z−(1/2))^2 ))  f(z) = (4/3).(1/(1+((2/( (√3)))(z−(1/2)))^2 ))  f(z) = (4/3)Σ_(n=0) ^∞ (−1)^n [(2/( (√3)))(z−(1/2))]^(2n)   The Laurent serie of f in (1/2) is :  f(z) = Σ_(n=0) ^∞ (((−1)^n 2^(2n+2) )/3^(n+1) )(z−(1/2))^(2n)   a_n  = (((−1)^n 2^(2n+2) )/3^(n+1) )
Laurentserieoffina:f(z)=n=0an(za)nf(z)=11z+z2f(z)=134+(z12)2f(z)=43.11+(23(z12))2f(z)=43n=0(1)n[23(z12)]2nTheLaurentserieoffin12is:f(z)=n=0(1)n22n+23n+1(z12)2nan=(1)n22n+23n+1

Leave a Reply

Your email address will not be published. Required fields are marked *