Menu Close

Find-matrix-A-A-1-given-that-matrix-A-2-1-1-0-4-3-2-1-0-2-3-1-1-1-0-1-using-row-operations-




Question Number 175266 by oustmuchiya@gmail.com last updated on 25/Aug/22
Find matrix ∣A∣A^(-1)    given that matrix   A= (((√2),(-1),1,( 0)),(4,3,2,(-1)),(0,2,3,( 1)),(1,(-1),0,( 1)) )  using row operations
$$\mathrm{Find}\:\mathrm{matrix}\:\mid\mathrm{A}\mid\mathrm{A}^{-\mathrm{1}} \: \\ $$$$\mathrm{given}\:\mathrm{that}\:\mathrm{matrix}\: \\ $$$$\mathrm{A}=\begin{pmatrix}{\sqrt{\mathrm{2}}}&{-\mathrm{1}}&{\mathrm{1}}&{\:\mathrm{0}}\\{\mathrm{4}}&{\mathrm{3}}&{\mathrm{2}}&{-\mathrm{1}}\\{\mathrm{0}}&{\mathrm{2}}&{\mathrm{3}}&{\:\mathrm{1}}\\{\mathrm{1}}&{-\mathrm{1}}&{\mathrm{0}}&{\:\mathrm{1}}\end{pmatrix} \\ $$$$\mathrm{using}\:\mathrm{row}\:\mathrm{operations} \\ $$
Commented by kaivan.ahmadi last updated on 27/Aug/22
easy  ∣A∣.A^(−1) =∣A∣.(1/(∣A∣))A^∗ =A^∗ =A_(ij) ^T
$${easy} \\ $$$$\mid{A}\mid.{A}^{−\mathrm{1}} =\mid{A}\mid.\frac{\mathrm{1}}{\mid{A}\mid}{A}^{\ast} ={A}^{\ast} ={A}_{{ij}} ^{{T}} \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *