Menu Close

find-max-and-min-value-of-f-x-y-4x-2-8xy-9y-2-8x-24y-4-




Question Number 119240 by benjo_mathlover last updated on 23/Oct/20
find max and min value of   f(x,y) = 4x^2 +8xy+9y^2 −8x−24y+4
findmaxandminvalueoff(x,y)=4x2+8xy+9y28x24y+4
Answered by 1549442205PVT last updated on 23/Oct/20
f(x,y) = 4x^2 +8xy+9y^2 −8x−24y+4   =[4x^2 +2.2x(2y−2)+4y^2 −8y+4]+5y^2 −16y  =(2x+2y−2)^2 +5y^2 −16y  =4(x+y−1)^2 +5(y−(8/5))^2 −((64)/5)≥((−64)/5)  ⇒f_(min) (x,y)=((−64)/5) when   { ((y−8/5=0)),((x+y−1=0)) :}⇔ { ((x=−3/5)),((y=8/5)) :}  f_(max) (x,y)=+∞
f(x,y)=4x2+8xy+9y28x24y+4=[4x2+2.2x(2y2)+4y28y+4]+5y216y=(2x+2y2)2+5y216y=4(x+y1)2+5(y85)2645645fmin(x,y)=645when{y8/5=0x+y1=0{x=3/5y=8/5fmax(x,y)=+
Answered by ebi last updated on 23/Oct/20
  f_x =(d/dx)f  f_x =8x+8y−8  f_x =0  8x+8y−8=0...... (1)    f_y =(d/dy)f  f_y =8x+18y−24  f_y =0  8x+18y−24=0......(2)    (1) −(2): −10y=−16→y=(8/5)  ∴ 8x+8((8/5))=8→x=−(3/5)  (−(3/5),(8/5)) when f_x =0 and f_y =0    D−Test  D=f_(xx) ∙f_(yy) −(f_(xy) )^2   f_(xx) =8  f_(yy) =18  f_(xy) =8  D=8(18)−8^2 =80  since D=80>0 and f_(xx) =8>0,  then f has a minimum at (−(3/5),(8/5))
fx=ddxffx=8x+8y8fx=08x+8y8=0(1)fy=ddyffy=8x+18y24fy=08x+18y24=0(2)(1)(2):10y=16y=858x+8(85)=8x=35(35,85)whenfx=0andfy=0DTestD=fxxfyy(fxy)2fxx=8fyy=18fxy=8D=8(18)82=80sinceD=80>0andfxx=8>0,thenfhasaminimumat(35,85)

Leave a Reply

Your email address will not be published. Required fields are marked *