Menu Close

Find-maximum-and-minimum-value-of-function-f-x-27-cos-2x-81-sin-2x-




Question Number 128753 by bramlexs22 last updated on 10/Jan/21
Find maximum and minimum  value of function f(x)=27^(cos 2x) . 81^(sin 2x)  ?
$$\mathrm{Find}\:\mathrm{maximum}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\mathrm{value}\:\mathrm{of}\:\mathrm{function}\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{27}^{\mathrm{cos}\:\mathrm{2x}} .\:\mathrm{81}^{\mathrm{sin}\:\mathrm{2x}} \:? \\ $$
Answered by liberty last updated on 10/Jan/21
 ⇔ f(x) = 3^(3cos 2x) . 3^(4sin 2x)          f(x)=3^(3cos 2x+4sin 2x)  = 3^(5cos (2x−α))    we know that −1≤ cos (2x−α)≤1 it follows   that max f(x)= 3^(5.1)  = 3^5 =243 and minimum   f(x)=3^(5.(−1)) =3^(−5)  = (1/(243)) .
$$\:\Leftrightarrow\:\mathrm{f}\left(\mathrm{x}\right)\:=\:\mathrm{3}^{\mathrm{3cos}\:\mathrm{2x}} .\:\mathrm{3}^{\mathrm{4sin}\:\mathrm{2x}} \\ $$$$\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3}^{\mathrm{3cos}\:\mathrm{2x}+\mathrm{4sin}\:\mathrm{2x}} \:=\:\mathrm{3}^{\mathrm{5cos}\:\left(\mathrm{2x}−\alpha\right)} \\ $$$$\:\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:−\mathrm{1}\leqslant\:\mathrm{cos}\:\left(\mathrm{2x}−\alpha\right)\leqslant\mathrm{1}\:\mathrm{it}\:\mathrm{follows}\: \\ $$$$\mathrm{that}\:\mathrm{max}\:\mathrm{f}\left(\mathrm{x}\right)=\:\mathrm{3}^{\mathrm{5}.\mathrm{1}} \:=\:\mathrm{3}^{\mathrm{5}} =\mathrm{243}\:\mathrm{and}\:\mathrm{minimum} \\ $$$$\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{3}^{\mathrm{5}.\left(−\mathrm{1}\right)} =\mathrm{3}^{−\mathrm{5}} \:=\:\frac{\mathrm{1}}{\mathrm{243}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *