Menu Close

Find-maximum-and-minimum-values-of-f-x-y-xy-on-the-circle-g-x-y-x-2-y-2-1-0-




Question Number 122695 by liberty last updated on 19/Nov/20
Find maximum and minimum values  of f(x,y) = xy on the circle g(x,y)=  x^2 +y^2 −1=0 .
Findmaximumandminimumvaluesoff(x,y)=xyonthecircleg(x,y)=x2+y21=0.
Answered by john santu last updated on 19/Nov/20
By Lagrange multiplier    ▽f(p) = λ ▽g(p) ,where P is any point    (((∂f/∂x)),((∂f/∂y)) ) = λ  (((∂g/∂x)),((∂g/∂y)) )    ((y),(x) ) =  (((2λx)),((2λy)) ) → { ((λ=(y/(2x)))),((λ=(x/(2y)))) :}   ⇒ (y/(2x)) = (x/(2y)) ⇒x^2 =y^2  ∧x^2 +y^2 =1   this gives four solutions     { ((((1/( (√2))),(1/( (√2)))) , ((1/( (√2))),−(1/( (√2)))))),(((−(1/( (√2))),(1/( (√2)))) ,(−(1/( (√2))),−(1/( (√2)))))) :}  Evaluating f at these four points  we get max value is (1/2) and min value  is −(1/2).
ByLagrangemultiplierf(p)=λg(p),wherePisanypoint(fxfy)=λ(gxgy)(yx)=(2λx2λy){λ=y2xλ=x2yy2x=x2yx2=y2x2+y2=1thisgivesfoursolutions{(12,12),(12,12)(12,12),(12,12)Evaluatingfatthesefourpointswegetmaxvalueis12andminvalueis12.
Answered by mr W last updated on 19/Nov/20
P=xy  y=(P/x)  x^2 +(P^2 /x^2 )−1=0  2x+((2PP′)/x^2 )−((2P^2 )/x^3 )=0  P′=0  x−(P^2 /x^3 )=0  x−((x^2 y^2 )/x^3 )=0  x^2 =y^2 =(1/2)  ⇒x=±(1/( (√2))), y=±(1/( (√2)))  (xy)_(max) =(1/2)  (xy)_(min) =−(1/2)
P=xyy=Pxx2+P2x21=02x+2PPx22P2x3=0P=0xP2x3=0xx2y2x3=0x2=y2=12x=±12,y=±12(xy)max=12(xy)min=12

Leave a Reply

Your email address will not be published. Required fields are marked *