Menu Close

Find-maximum-n-such-that-12-n-divides-100-




Question Number 57960 by mr W last updated on 15/Apr/19
Find maximum n such that 12^n  divides  100!.
Findmaximumnsuchthat12ndivides100!.
Answered by tanmay.chaudhury50@gmail.com last updated on 15/Apr/19
12=3×2^2   highest power of 3 contained in 100! is  I[((100)/3)]+I[((100)/3^2 )]+I[((100)/3^3 )]+I[((100)/3^4 )]  =33+11+3+1  =48  higest power of 2 contained in 100!  I[((100)/2)]+I[((100)/2^2 )]+I[((100)/2^3 )]+[((100)/2^4 )]+I[((100)/2^5 )]+I[((100)/2^6 )]  =50+25+12+6+3+1  =97  so highest power of 12→12^n   the value of n=48 [common minimum value  between highest power of factor 3 and 2]  sir pls check...
12=3×22highestpowerof3containedin100!isI[1003]+I[10032]+I[10033]+I[10034]=33+11+3+1=48higestpowerof2containedin100!I[1002]+I[10022]+I[10023]+[10024]+I[10025]+I[10026]=50+25+12+6+3+1=97sohighestpowerof1212nthevalueofn=48[commonminimumvaluebetweenhighestpoweroffactor3and2]sirplscheck
Commented by mr W last updated on 15/Apr/19
correct, thank you very much sir!
correct,thankyouverymuchsir!
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Apr/19
most welcome sir
mostwelcomesir
Commented by mr W last updated on 15/Apr/19
the answer is an other if the question  is not 100! but 99!. am i right?
theanswerisanotherifthequestionisnot100!but99!.amiright?
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Apr/19
I[((99)/3)]+I[((99)/3^2 )]+I[((99)/3^3 )]+I[((99)/3^4 )]  =33+11+3+1=48  I[((99)/2)]+I[((99)/2^2 )]+I[((99)/2^3 )]+I[((99)/2^4 )]+I[((99)/2^5 )]+I[((99)/2^6 )]  =49+24+12+6+3+1  =95  so ans is 48 ...sir pls chdck
I[993]+I[9932]+I[9933]+I[9934]=33+11+3+1=48I[992]+I[9922]+I[9923]+I[9924]+I[9925]+I[9926]=49+24+12+6+3+1=95soansis48sirplschdck
Commented by mr W last updated on 15/Apr/19
12^n =3^n ×2^(2n)   for power of 3: n≤48  for power of 2: 2n≤95 ⇒ n≤47  ⇒n_(max) =47
12n=3n×22nforpowerof3:n48forpowerof2:2n95n47nmax=47
Commented by tanmay.chaudhury50@gmail.com last updated on 15/Apr/19
yes sir thank you for your thought process  quite deep ...thanks again...
yessirthankyouforyourthoughtprocessquitedeepthanksagain

Leave a Reply

Your email address will not be published. Required fields are marked *