Menu Close

Find-maximum-of-xyz-x-a-x-y-y-z-z-b-




Question Number 53769 by ajfour last updated on 25/Jan/19
Find maximum of     ((xyz)/((x+a)(x+y)(y+z)(z+b)))  .
$${Find}\:{maximum}\:{of} \\ $$$$\:\:\:\frac{{xyz}}{\left({x}+{a}\right)\left({x}+{y}\right)\left({y}+{z}\right)\left({z}+{b}\right)}\:\:. \\ $$
Commented by mr W last updated on 25/Jan/19
(1/(16(√(ab)))) ?
$$\frac{\mathrm{1}}{\mathrm{16}\sqrt{{ab}}}\:? \\ $$
Commented by ajfour last updated on 25/Jan/19
(a^(1/4) +b^(1/4) )^(−4)    Sir.
$$\left({a}^{\mathrm{1}/\mathrm{4}} +{b}^{\mathrm{1}/\mathrm{4}} \right)^{−\mathrm{4}} \:\:\:{Sir}. \\ $$
Commented by ajfour last updated on 25/Jan/19
long way, Sir. i got it just now  (∂f/∂x)=0   ⇒  x^2 =ay  (∂f/∂y)= 0   ⇒  y^2 =xz  (∂f/∂z)=0   ⇒  z^2 =by  hence   xz=ab  Then  x^2 =a(√(ab))  , y^2 =(√(ab)) , z^2 =b(√(ab))  after much length i could get    f(x,y,z) is then = (a^(1/4) +b^(1/4) )^(−4)  .
$${long}\:{way},\:{Sir}.\:{i}\:{got}\:{it}\:{just}\:{now} \\ $$$$\frac{\partial{f}}{\partial{x}}=\mathrm{0}\:\:\:\Rightarrow\:\:{x}^{\mathrm{2}} ={ay} \\ $$$$\frac{\partial{f}}{\partial{y}}=\:\mathrm{0}\:\:\:\Rightarrow\:\:{y}^{\mathrm{2}} ={xz} \\ $$$$\frac{\partial{f}}{\partial{z}}=\mathrm{0}\:\:\:\Rightarrow\:\:{z}^{\mathrm{2}} ={by} \\ $$$${hence}\:\:\:{xz}={ab} \\ $$$${Then}\:\:{x}^{\mathrm{2}} ={a}\sqrt{{ab}}\:\:,\:{y}^{\mathrm{2}} =\sqrt{{ab}}\:,\:{z}^{\mathrm{2}} ={b}\sqrt{{ab}} \\ $$$${after}\:{much}\:{length}\:{i}\:{could}\:{get} \\ $$$$\:\:{f}\left({x},{y},{z}\right)\:{is}\:{then}\:=\:\left({a}^{\mathrm{1}/\mathrm{4}} +{b}^{\mathrm{1}/\mathrm{4}} \right)^{−\mathrm{4}} \:. \\ $$
Commented by mr W last updated on 26/Jan/19
you are right sir!  i considered only the case a=b.
$${you}\:{are}\:{right}\:{sir}! \\ $$$${i}\:{considered}\:{only}\:{the}\:{case}\:{a}={b}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *