Menu Close

find-maximum-value-2x-2-y-2-with-constraint-x-2-y-2-4x-2y-1-0-




Question Number 87989 by john santu last updated on 07/Apr/20
find maximum value  2x^2 +y^2  with constraint  x^2 +y^2 −4x+2y+1=0
findmaximumvalue2x2+y2withconstraintx2+y24x+2y+1=0
Answered by mr W last updated on 07/Apr/20
x^2 +y^2 −4x+2y+1=0   ⇒(x−2)^2 +(y+1)^2 =4  let x=2+2 cos θ  let y=−1+2 sin θ  k=2x^2 +y^2 =8(1+cos θ)^2 +(−1+2 sin θ)^2   (dk/dθ)=16(1+cos θ)(−sin θ)+4(−1+2 sin θ)cos θ=0  4sin θ+2cos θsin θ+cos θ=0  ⇒(4/(cos θ))+2+(1/(sin θ))=0  ⇒θ≈−0.1659, 2.7118    k_(min) ≈0.094 with θ=2.7118  k_(max) ≈33.33 with θ=−0.1659
x2+y24x+2y+1=0(x2)2+(y+1)2=4letx=2+2cosθlety=1+2sinθk=2x2+y2=8(1+cosθ)2+(1+2sinθ)2dkdθ=16(1+cosθ)(sinθ)+4(1+2sinθ)cosθ=04sinθ+2cosθsinθ+cosθ=04cosθ+2+1sinθ=0θ0.1659,2.7118kmin0.094withθ=2.7118kmax33.33withθ=0.1659
Commented by mr W last updated on 07/Apr/20
the question is to find the smallest  and the largest ellipse which touches  a given circle. “exact” solution maybe  not possible.
thequestionistofindthesmallestandthelargestellipsewhichtouchesagivencircle.exactsolutionmaybenotpossible.
Answered by john santu last updated on 08/Apr/20
Commented by mr W last updated on 08/Apr/20
when i use t=tan (θ/2), i get also a  quadratic equation about t:  t^4 −4t^3 −12t+1=0.
wheniuset=tanθ2,igetalsoaquadraticequationaboutt:t44t312t+1=0.
Commented by john santu last updated on 08/Apr/20
yes. we cannot get the exact value
yes.wecannotgettheexactvalue

Leave a Reply

Your email address will not be published. Required fields are marked *