Menu Close

Find-maximum-value-of-function-x-2x-16-x-35-x-




Question Number 151685 by iloveisrael last updated on 22/Aug/21
  Find maximum value of function    α(x)= (√(2x)) +(√(16−x)) +(√(35+x)) .
Findmaximumvalueoffunctionα(x)=2x+16x+35+x.
Answered by mr W last updated on 22/Aug/21
x≥0  x≤16  f′(x)=(1/( (√(2x))))−(1/( 2(√(16−x))))+(1/( 2(√(35+x))))=0  (2/( (√(2x))))+(1/( (√(35+x))))=(1/( (√(16−x))))  (2/( x))+(1/( 35+x))+((2(√2))/( (√(x(35+x)))))=(1/( 16−x))  ((2(√2))/( (√(x(35+x)))))=((x(35+x)−x(16−x)−2(35+x)(16−x))/( (16−x)(x)(35+x)))  ((2(√2))/( (√(x(35+x)))))=((4x^2 +57x−1120)/( (16−x)(x)(35+x)))  8=(((4x^2 +57x−1120)^2 )/( (16−x)^2 (x)(35+x)))  8x^4 +432x^3 +1201x^2 −199360x+1254400=0  ⇒x≈12.6106  f(x)_(max) ≈13.7631
x0x16f(x)=12x1216x+1235+x=022x+135+x=116x2x+135+x+22x(35+x)=116x22x(35+x)=x(35+x)x(16x)2(35+x)(16x)(16x)(x)(35+x)22x(35+x)=4x2+57x1120(16x)(x)(35+x)8=(4x2+57x1120)2(16x)2(x)(35+x)8x4+432x3+1201x2199360x+1254400=0x12.6106f(x)max13.7631
Commented by mr W last updated on 22/Aug/21
f(x)_(min) =f(0)=4+(√(35))
f(x)min=f(0)=4+35
Commented by MJS_new last updated on 22/Aug/21
I also tried. no useable exact solution possible
Ialsotried.nouseableexactsolutionpossible
Commented by mr W last updated on 22/Aug/21
so it is, sir. i found no exact way.
soitis,sir.ifoundnoexactway.
Commented by iloveisrael last updated on 22/Aug/21
for minimum value , i got exact value
forminimumvalue,igotexactvalue

Leave a Reply

Your email address will not be published. Required fields are marked *