Question Number 151685 by iloveisrael last updated on 22/Aug/21
$$\:\:{Find}\:{maximum}\:{value}\:{of}\:{function} \\ $$$$\:\:\alpha\left({x}\right)=\:\sqrt{\mathrm{2}{x}}\:+\sqrt{\mathrm{16}−{x}}\:+\sqrt{\mathrm{35}+{x}}\:. \\ $$
Answered by mr W last updated on 22/Aug/21
$${x}\geqslant\mathrm{0} \\ $$$${x}\leqslant\mathrm{16} \\ $$$${f}'\left({x}\right)=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}{x}}}−\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{16}−{x}}}+\frac{\mathrm{1}}{\:\mathrm{2}\sqrt{\mathrm{35}+{x}}}=\mathrm{0} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\mathrm{2}{x}}}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{35}+{x}}}=\frac{\mathrm{1}}{\:\sqrt{\mathrm{16}−{x}}} \\ $$$$\frac{\mathrm{2}}{\:{x}}+\frac{\mathrm{1}}{\:\mathrm{35}+{x}}+\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{{x}\left(\mathrm{35}+{x}\right)}}=\frac{\mathrm{1}}{\:\mathrm{16}−{x}} \\ $$$$\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{{x}\left(\mathrm{35}+{x}\right)}}=\frac{{x}\left(\mathrm{35}+{x}\right)−{x}\left(\mathrm{16}−{x}\right)−\mathrm{2}\left(\mathrm{35}+{x}\right)\left(\mathrm{16}−{x}\right)}{\:\left(\mathrm{16}−{x}\right)\left({x}\right)\left(\mathrm{35}+{x}\right)} \\ $$$$\frac{\mathrm{2}\sqrt{\mathrm{2}}}{\:\sqrt{{x}\left(\mathrm{35}+{x}\right)}}=\frac{\mathrm{4}{x}^{\mathrm{2}} +\mathrm{57}{x}−\mathrm{1120}}{\:\left(\mathrm{16}−{x}\right)\left({x}\right)\left(\mathrm{35}+{x}\right)} \\ $$$$\mathrm{8}=\frac{\left(\mathrm{4}{x}^{\mathrm{2}} +\mathrm{57}{x}−\mathrm{1120}\right)^{\mathrm{2}} }{\:\left(\mathrm{16}−{x}\right)^{\mathrm{2}} \left({x}\right)\left(\mathrm{35}+{x}\right)} \\ $$$$\mathrm{8}{x}^{\mathrm{4}} +\mathrm{432}{x}^{\mathrm{3}} +\mathrm{1201}{x}^{\mathrm{2}} −\mathrm{199360}{x}+\mathrm{1254400}=\mathrm{0} \\ $$$$\Rightarrow{x}\approx\mathrm{12}.\mathrm{6106} \\ $$$${f}\left({x}\right)_{{max}} \approx\mathrm{13}.\mathrm{7631} \\ $$
Commented by mr W last updated on 22/Aug/21
$${f}\left({x}\right)_{{min}} ={f}\left(\mathrm{0}\right)=\mathrm{4}+\sqrt{\mathrm{35}} \\ $$
Commented by MJS_new last updated on 22/Aug/21
$$\mathrm{I}\:\mathrm{also}\:\mathrm{tried}.\:\mathrm{no}\:\mathrm{useable}\:\mathrm{exact}\:\mathrm{solution}\:\mathrm{possible} \\ $$
Commented by mr W last updated on 22/Aug/21
$${so}\:{it}\:{is},\:{sir}.\:{i}\:{found}\:{no}\:{exact}\:{way}. \\ $$
Commented by iloveisrael last updated on 22/Aug/21
$${for}\:{minimum}\:{value}\:,\:{i}\:{got}\:{exact}\:{value} \\ $$