Menu Close

find-min-a-b-R-2-1-1-ax-b-2-dx-




Question Number 62924 by mathmax by abdo last updated on 26/Jun/19
find min_((a,b)∈R^2 )      ∫_(−1) ^1 (ax+b)^2 dx
findmin(a,b)R211(ax+b)2dx
Commented by kaivan.ahmadi last updated on 27/Jun/19
u=ax+b⇒du=adx  (1/a)∫u^2 du=(u^3 /(3a))=(((ax+b)^3 )/(3a))∣_(−1) ^1 =(1/(3a))[(a+b)^3 −(b−a)^3 ]=  (1/(3a))[(a^3 +3a^2 b+3ab^2 +b^3 )−(b^3 −3ab^2 +3a^2 b−a^3 )]=  (1/(3a))(2a^3 +6ab^2 )=(2/3)a^2 +2b^2
u=ax+bdu=adx1au2du=u33a=(ax+b)33a11=13a[(a+b)3(ba)3]=13a[(a3+3a2b+3ab2+b3)(b33ab2+3a2ba3)]=13a(2a3+6ab2)=23a2+2b2
Commented by mathmax by abdo last updated on 27/Jun/19
thanks sir Ahmadi.
thankssirAhmadi.
Answered by MJS last updated on 27/Jun/19
∫^1 _(−1) (ax+b)^2 dx=[(((ax+b)^3 )/(3a))]_(−1) ^1 =(2/3)(a^2 +3b^2 )  the minimum of this is zero with a=b=0
11(ax+b)2dx=[(ax+b)33a]11=23(a2+3b2)theminimumofthisiszerowitha=b=0
Commented by mathmax by abdo last updated on 27/Jun/19
thanks sir mjs
thankssirmjs

Leave a Reply

Your email address will not be published. Required fields are marked *