Menu Close

Find-min-value-f-x-x-4-x-5-x-6-x-7-




Question Number 170566 by cortano1 last updated on 27/May/22
  Find min value     f(x)= (x+4)(x+5)(x+6)(x+7)
Findminvaluef(x)=(x+4)(x+5)(x+6)(x+7)
Answered by som(math1967) last updated on 27/May/22
(x+4)(x+7)(x+5)(x+6)  (x^2 +11x+28)(x^2 +11x+30)  (a+28)(a+30)    [let a=x^2 +11x]  a^2 +58a+840  (a+29)^2 −29^2 +840  (a+29)^2 −1  (a+29)^2 ≥0  (a+29)^2 −1≥−1  ∴(x+4)(x+5)(x+6)(x+7)≥−1  ∴ min value of  f(x) is −1
(x+4)(x+7)(x+5)(x+6)(x2+11x+28)(x2+11x+30)(a+28)(a+30)[leta=x2+11x]a2+58a+840(a+29)2292+840(a+29)21(a+29)20(a+29)211(x+4)(x+5)(x+6)(x+7)1minvalueoff(x)is1
Answered by ajfour last updated on 27/May/22
let   x+((11)/2)=t  f(t)=(t−(3/2))(t−(1/2))(t+(1/2))(t+(3/2))  =(t^2 −(9/4))(t^2 −(1/4))  let  t^2 −(5/4)=z  f(z)=z^2 −1  f(z)∣_(min) =−1  when   t=x+((11)/2)=±((√5)/2)     x=((−11±(√5))/2)
letx+112=tf(t)=(t32)(t12)(t+12)(t+32)=(t294)(t214)lett254=zf(z)=z21f(z)min=1whent=x+112=±52x=11±52
Commented by Tawa11 last updated on 08/Oct/22
Great sir
Greatsir

Leave a Reply

Your email address will not be published. Required fields are marked *