Menu Close

Find-minimum-and-maximum-of-f-x-9x-2-sin-2-x-4-x-sin-x-where-0-lt-x-lt-pi-




Question Number 124557 by bemath last updated on 04/Dec/20
Find minimum and maximum  of f(x)= ((9x^2 sin^2 x+4)/(x sin x))  where 0 < x<π
Findminimumandmaximumoff(x)=9x2sin2x+4xsinxwhere0<x<π
Answered by mr W last updated on 04/Dec/20
no maximum, since  lim_(x→0,π) f(x)=+∞  t=x sin x >0  f(x)=9t+(4/t)≥(3(√t)−(2/( (√t))))^2 +12≥12  ⇒minimum=12
nomaximum,sincelimx0,πf(x)=+t=xsinx>0f(x)=9t+4t(3t2t)2+1212minimum=12
Commented by bemath last updated on 04/Dec/20
sir i got max = 18
sirigotmax=18
Commented by bemath last updated on 04/Dec/20
sorry sir. i wrong .
sorrysir.iwrong.
Commented by mr W last updated on 04/Dec/20
there is only local maximum, no  global maximum!
thereisonlylocalmaximum,noglobalmaximum!

Leave a Reply

Your email address will not be published. Required fields are marked *