Menu Close

Find-minimum-and-maximum-of-f-x-9x-2-sin-2-x-4-x-sin-x-where-0-lt-x-lt-pi-




Question Number 124557 by bemath last updated on 04/Dec/20
Find minimum and maximum  of f(x)= ((9x^2 sin^2 x+4)/(x sin x))  where 0 < x<π
$${Find}\:{minimum}\:{and}\:{maximum} \\ $$$${of}\:{f}\left({x}\right)=\:\frac{\mathrm{9}{x}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} {x}+\mathrm{4}}{{x}\:\mathrm{sin}\:{x}} \\ $$$${where}\:\mathrm{0}\:<\:{x}<\pi \\ $$
Answered by mr W last updated on 04/Dec/20
no maximum, since  lim_(x→0,π) f(x)=+∞  t=x sin x >0  f(x)=9t+(4/t)≥(3(√t)−(2/( (√t))))^2 +12≥12  ⇒minimum=12
$${no}\:{maximum},\:{since} \\ $$$$\underset{{x}\rightarrow\mathrm{0},\pi} {\mathrm{lim}}{f}\left({x}\right)=+\infty \\ $$$${t}={x}\:\mathrm{sin}\:{x}\:>\mathrm{0} \\ $$$${f}\left({x}\right)=\mathrm{9}{t}+\frac{\mathrm{4}}{{t}}\geqslant\left(\mathrm{3}\sqrt{{t}}−\frac{\mathrm{2}}{\:\sqrt{{t}}}\right)^{\mathrm{2}} +\mathrm{12}\geqslant\mathrm{12} \\ $$$$\Rightarrow{minimum}=\mathrm{12} \\ $$
Commented by bemath last updated on 04/Dec/20
sir i got max = 18
$${sir}\:{i}\:{got}\:{max}\:=\:\mathrm{18} \\ $$
Commented by bemath last updated on 04/Dec/20
sorry sir. i wrong .
$${sorry}\:{sir}.\:{i}\:{wrong}\:. \\ $$
Commented by mr W last updated on 04/Dec/20
there is only local maximum, no  global maximum!
$${there}\:{is}\:{only}\:{local}\:{maximum},\:{no} \\ $$$${global}\:{maximum}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *