Menu Close

Find-minimum-value-of-cos-cos-cos-




Question Number 56954 by rahul 19 last updated on 27/Mar/19
Find minimum value of :  cos(ω−φ)+cos(φ−ϕ)+cos (ϕ−ω).
Findminimumvalueof:cos(ωϕ)+cos(ϕφ)+cos(φω).
Commented by rahul 19 last updated on 27/Mar/19
Ans:−(3/2)
Ans:32
Answered by tanmay.chaudhury50@gmail.com last updated on 27/Mar/19
sinw=a_1    sin∅=a_2     sinϕ=a_3   cosw=b_1    cos∅=b_2     cosϕ=b_3   k=b_1 b_2 +a_1 a_2 +b_2 b_3 +a_2 a_3 +b_1 b_3 +a_1 a_3   2k+3=2(a_1 a_2 +a_2 a_3 +a_1 a_3 +b_1 b_2 +b_2 b_3 +b_1 b_3 )+a_1 ^2 +b_1 ^2 +a_2 ^2 +b_2 ^2 +a_3 ^2 +b_3 ^2   2k+3=(a_1 +a_2 +a_3 )^2 +(b_1 +b_2 +b_3 )^2   k=(((a_1 +a_2 +a_3 )^2  +(b_1 +b_2 +b_3 )^2 −3)/2)  value of k is minimum when (a_1 +a_2 +a_3 )^2 =0  and (b_1 +b_2 +b_3 )^2 =0  so k_(min) =((−3)/2)  proved
sinw=a1sin=a2sinφ=a3cosw=b1cos=b2cosφ=b3k=b1b2+a1a2+b2b3+a2a3+b1b3+a1a32k+3=2(a1a2+a2a3+a1a3+b1b2+b2b3+b1b3)+a12+b12+a22+b22+a32+b322k+3=(a1+a2+a3)2+(b1+b2+b3)2k=(a1+a2+a3)2+(b1+b2+b3)232valueofkisminimumwhen(a1+a2+a3)2=0and(b1+b2+b3)2=0sokmin=32proved
Commented by rahul 19 last updated on 27/Mar/19
thank you sir!
Answered by mr W last updated on 27/Mar/19
let ω−φ=α, φ−ϕ=β  ϕ−ω=−(ω−φ+φ−ϕ)=−(α+β)    cos(ω−φ)+cos(φ−ϕ)+cos (ϕ−ω)  =cos α+cos β+cos (α+β)=F(α,β)    (∂F/∂α)=−sin α−sin (α+β)=0   ...(i)  (∂F/∂β)=−sin β−sin (α+β)=0   ...(ii)  ⇒α=β  ⇒sin α=−sin 2α=−2sin α cos α  ⇒sin α=0⇒F_(max) =3  ⇒cos α=−(1/2)⇒F_(min) =−(1/2)−(1/2)+2(−(1/2))^2 −1=−(3/2)
letωϕ=α,ϕφ=βφω=(ωϕ+ϕφ)=(α+β)cos(ωϕ)+cos(ϕφ)+cos(φω)=cosα+cosβ+cos(α+β)=F(α,β)Fα=sinαsin(α+β)=0(i)Fβ=sinβsin(α+β)=0(ii)α=βsinα=sin2α=2sinαcosαsinα=0Fmax=3cosα=12Fmin=1212+2(12)21=32
Commented by rahul 19 last updated on 27/Mar/19
Ausgezichnet! ����
Commented by mr W last updated on 27/Mar/19
Danke sehr!

Leave a Reply

Your email address will not be published. Required fields are marked *