Menu Close

find-minimum-value-of-f-x-4sin-2x-5sin-x-5cos-x-6-




Question Number 164716 by cortano1 last updated on 21/Jan/22
   find minimum value of    f(x)=4sin 2x−5sin x−5cos x+6
findminimumvalueoff(x)=4sin2x5sinx5cosx+6
Answered by bobhans last updated on 21/Jan/22
 f(x)=4cos ((π/2)−2x)−5(√2) cos ((π/4)−x)+6   f(x)=4cos 2((π/4)−x)−5(√2) cos ((π/4)−x)+6   (π/4)−x=ϕ ⇒f(ϕ)=4cos 2ϕ−5(√2) cos ϕ+6  f(ϕ)=8cos^2 ϕ−5(√2) cos ϕ+2  f(ϕ) will be min when cos ϕ= ((5(√2))/(16))  min f(ϕ) = 8(((5(√2))/(16)))^2 −5(√2) (((5(√2))/(16)))+2=(7/(16))
f(x)=4cos(π22x)52cos(π4x)+6f(x)=4cos2(π4x)52cos(π4x)+6π4x=φf(φ)=4cos2φ52cosφ+6f(φ)=8cos2φ52cosφ+2f(φ)willbeminwhencosφ=5216minf(φ)=8(5216)252(5216)+2=716

Leave a Reply

Your email address will not be published. Required fields are marked *