find-minimum-value-of-f-x-4sin-2x-5sin-x-5cos-x-6- Tinku Tara June 4, 2023 Differentiation 0 Comments FacebookTweetPin Question Number 164716 by cortano1 last updated on 21/Jan/22 findminimumvalueoff(x)=4sin2x−5sinx−5cosx+6 Answered by bobhans last updated on 21/Jan/22 f(x)=4cos(π2−2x)−52cos(π4−x)+6f(x)=4cos2(π4−x)−52cos(π4−x)+6π4−x=φ⇒f(φ)=4cos2φ−52cosφ+6f(φ)=8cos2φ−52cosφ+2f(φ)willbeminwhencosφ=5216minf(φ)=8(5216)2−52(5216)+2=716 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Question-164719Next Next post: tan3x-5tanx-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.