Menu Close

find-minimum-value-of-function-f-x-27-2x-2-96-27-x-2-




Question Number 111699 by bemath last updated on 04/Sep/20
find minimum value of function  f(x) = ((27)/(2x^2 )) + ((96)/(27)) x^2
findminimumvalueoffunctionf(x)=272x2+9627x2
Answered by john santu last updated on 04/Sep/20
Answered by ajfour last updated on 04/Sep/20
f(x)=u+v  uv=c=48  f(x)∣_(min) =mn((√((u−v)^2 +4uv)) ) = 2(√(uv))                   =2(√(48)) =8(√3) .
f(x)=u+vuv=c=48f(x)min=mn((uv)2+4uv)=2uv=248=83.
Commented by bemath last updated on 04/Sep/20
how you got uv = c = 48
howyougotuv=c=48
Commented by ajfour last updated on 04/Sep/20
   f(x)=u+v  uv=((27)/(2x^2 ))×((96x^2 )/(27)) = 48
f(x)=u+vuv=272x2×96x227=48
Answered by 1549442205PVT last updated on 04/Sep/20
Applying Cauchy′s inequality for  positive numbers we have  f(x)=((27)/(2x^2 )) + ((96)/(27)) x^2 ≥2(√(((27)/(2x^2 )).((96x^2 )/(27))))  =2(√(48))=8(√3)  The equality ocurrs if and only if   ((27)/(2x^2 ))=((96x^2 )/(27))⇔x^4 =((27^2 )/(192))⇔x^2 =((27)/(8(√3)))  ⇔∣x∣=((3(√3))/( (√(8(√3)))))⇔x=±((3(√3))/( (√(8(√3)))))  Thus,f(x) has smallest value equal to  8(√(3 )) when x=±((3(√3))/( (√(8(√3)))))
ApplyingCauchysinequalityforpositivenumberswehavef(x)=272x2+9627x22272x2.96x227=248=83Theequalityocurrsifandonlyif272x2=96x227x4=272192x2=2783⇔∣x∣=3383x=±3383Thus,f(x)hassmallestvalueequalto83whenx=±3383

Leave a Reply

Your email address will not be published. Required fields are marked *