Menu Close

Find-minimum-value-of-function-f-x-2x-x-1-x-2-1-




Question Number 167167 by cortano1 last updated on 08/Mar/22
  Find minimum value of function     f(x)=2x−(√(x+1))−(√(x^2 −1))
$$\:\:\mathrm{Find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\:\mathrm{function}\: \\ $$$$\:\:\mathrm{f}\left(\mathrm{x}\right)=\mathrm{2x}−\sqrt{\mathrm{x}+\mathrm{1}}−\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{1}} \\ $$
Answered by MJS_new last updated on 08/Mar/22
f(−1)=−2  f has a singularity at x=−1
$${f}\left(−\mathrm{1}\right)=−\mathrm{2} \\ $$$${f}\:\mathrm{has}\:\mathrm{a}\:\mathrm{singularity}\:\mathrm{at}\:{x}=−\mathrm{1} \\ $$
Commented by cortano1 last updated on 08/Mar/22
not minimum value = (1/4)?
$$\mathrm{not}\:\mathrm{minimum}\:\mathrm{value}\:=\:\frac{\mathrm{1}}{\mathrm{4}}? \\ $$
Commented by cortano1 last updated on 08/Mar/22
when x=(5/4)
$$\mathrm{when}\:\mathrm{x}=\frac{\mathrm{5}}{\mathrm{4}} \\ $$
Commented by MJS_new last updated on 08/Mar/22
yes there′s a local minimum at x=(5/4)  but the absolute minimum is at x=−1
$$\mathrm{yes}\:\mathrm{there}'\mathrm{s}\:\mathrm{a}\:\mathrm{local}\:\mathrm{minimum}\:\mathrm{at}\:{x}=\frac{\mathrm{5}}{\mathrm{4}} \\ $$$$\mathrm{but}\:\mathrm{the}\:\mathrm{absolute}\:\mathrm{minimum}\:\mathrm{is}\:\mathrm{at}\:{x}=−\mathrm{1} \\ $$
Commented by cortano1 last updated on 09/Mar/22
no sir since D_f  is x≥1
$$\mathrm{no}\:\mathrm{sir}\:\mathrm{since}\:\mathrm{D}_{\mathrm{f}} \:\mathrm{is}\:\mathrm{x}\geqslant\mathrm{1}\: \\ $$
Commented by MJS_new last updated on 09/Mar/22
no. it′s defined for x=−1∨x≥1  f(−1)=2×(−1)−(√(−1+1))−(√((−1)^2 −1))=  =−2−(√0)−(√0)=−2
$$\mathrm{no}.\:\mathrm{it}'\mathrm{s}\:\mathrm{defined}\:\mathrm{for}\:{x}=−\mathrm{1}\vee{x}\geqslant\mathrm{1} \\ $$$${f}\left(−\mathrm{1}\right)=\mathrm{2}×\left(−\mathrm{1}\right)−\sqrt{−\mathrm{1}+\mathrm{1}}−\sqrt{\left(−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}= \\ $$$$=−\mathrm{2}−\sqrt{\mathrm{0}}−\sqrt{\mathrm{0}}=−\mathrm{2} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *