Menu Close

find-minimum-value-of-function-y-x-6-2-25-x-6-2-121-




Question Number 114922 by bemath last updated on 22/Sep/20
find minimum value of function  y=(√((x+6)^2 +25)) +(√((x−6)^2 +121))
findminimumvalueoffunctiony=(x+6)2+25+(x6)2+121
Answered by john santu last updated on 22/Sep/20
you want to find the point on the   x−axis such that the sum of its   distance from the points (−6,5) and  (6,11) is minimal.  consider the symetric point of (−6,5)  with respect to the axis, that is (−6,−5).  the line through (−6,−5) and (6,11)  has equation 4x−3y+9=0  and it intersects the x−axis at   x=−(9/4). The minimum value   is therefore y=(√((−(9/4)+6)^2 +25))+(√((−(9/6)−6)^2 +121))  y = ((25)/4) + ((55)/4) = 20 ∴
youwanttofindthepointonthexaxissuchthatthesumofitsdistancefromthepoints(6,5)and(6,11)isminimal.considerthesymetricpointof(6,5)withrespecttotheaxis,thatis(6,5).thelinethrough(6,5)and(6,11)hasequation4x3y+9=0anditintersectsthexaxisatx=94.Theminimumvalueisthereforey=(94+6)2+25+(966)2+121y=254+554=20
Commented by bemath last updated on 22/Sep/20
gave kudos
gavekudos
Answered by bobhans last updated on 22/Sep/20
with calculus  y = (√((x+6)^2 +25)) + (√((x−6)^2 +121))  y ′=(((x+6))/( (√((x+6)^2 +25)))) + (((x−6))/( (√((x−6)^2 +121)))) = 0  (x+6)(√((x−6)^2 +121)) +(x−6)(√((x+6)^2 +25)) = 0  (x+6)(√((x−6)^2 +121)) = (6−x)(√((x+6)^2 +25))  ((√((x−6)^2 +121))/( (√((x+6)^2 +25)))) = ((6−x)/(x+6))  (((x−6)^2 +121)/((x+6)^2 +25)) = (((x−6)^2 )/((x+6)^2 ))  (x^2 −36)^2 +121(x+6)^2 =(x^2 −36)^2 +25(x−6)^2   (11x+66)^2 =(5x−30)^2   (16x+36)(6x+96)=0    { ((x=−(9/4))),((x=−16)) :}  for x=−(9/4)  y=(√((−(9/4)+6)^2 +25)) +(√((−(9/4)−6)^2 +121))  y=(√((625)/(16))) + (√((3025)/(16))) = ((25)/4)+((55)/4)=20  for x=−16  y=(√((−16+6)^2 +25)) +(√((−16−6)^2 +121))  y=(√(125)) +(√(605)) = 35.78  therefore minimum value is 20
withcalculusy=(x+6)2+25+(x6)2+121y=(x+6)(x+6)2+25+(x6)(x6)2+121=0(x+6)(x6)2+121+(x6)(x+6)2+25=0(x+6)(x6)2+121=(6x)(x+6)2+25(x6)2+121(x+6)2+25=6xx+6(x6)2+121(x+6)2+25=(x6)2(x+6)2(x236)2+121(x+6)2=(x236)2+25(x6)2(11x+66)2=(5x30)2(16x+36)(6x+96)=0{x=94x=16forx=94y=(94+6)2+25+(946)2+121y=62516+302516=254+554=20forx=16y=(16+6)2+25+(166)2+121y=125+605=35.78thereforeminimumvalueis20

Leave a Reply

Your email address will not be published. Required fields are marked *