Menu Close

find-minimum-value-of-x-2-4-x-2-24x-153-for-x-0-in-R-




Question Number 80027 by jagoll last updated on 30/Jan/20
find minimum  value of (√(x^2 +4))+(√(x^2 −24x+153))  for x≥0 in R
findminimumvalueofx2+4+x224x+153forx0inR
Commented by john santu last updated on 30/Jan/20
yes sir
yessir
Commented by john santu last updated on 30/Jan/20
f′(x) = (x/( (√(x^2 +4))))+((x−12)/( (√(x^2 −24x+153)))) =0  (x/(12−x)) =(√((x^2 +4)/(x^2 −24x+153)))  (x^2 /(144−24x+x^2 )) =((x^2 +x)/(x^2 −24x+153))  x^4 −24x^3 +153x^2 =x^4 −24x^3 +144x^2   +4x^2 −96x+576  5x^2 +96x−576=0  x =((−96+(√(20736)))/(10)) = ((−96+144)/(10))=4.8  f_(min) = (√((((24)/5))^2 +4))+(√((((24)/5)−12)^2 +9))
f(x)=xx2+4+x12x224x+153=0x12x=x2+4x224x+153x214424x+x2=x2+xx224x+153x424x3+153x2=x424x3+144x2+4x296x+5765x2+96x576=0x=96+2073610=96+14410=4.8fmin=(245)2+4+(24512)2+9
Commented by mr W last updated on 30/Jan/20
with x=4.8 we get exactly f=13.  i.e. f_(min) =13.
withx=4.8wegetexactlyf=13.i.e.fmin=13.
Commented by jagoll last updated on 30/Jan/20
thanks mr w and john
thanksmrwandjohn

Leave a Reply

Your email address will not be published. Required fields are marked *