Question Number 83511 by jagoll last updated on 03/Mar/20
$$\mathrm{find}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{of}\: \\ $$$$\mid\mathrm{x}−\mathrm{y}\mid\:+\sqrt{\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$
Answered by john santu last updated on 03/Mar/20
$$\mathrm{the}\:\mathrm{minimum}\:\mathrm{value}\:\mathrm{we}\:\mathrm{get}\:\mathrm{when}\: \\ $$$$\mathrm{x}\:=\:\mathrm{y}\:\Rightarrow\:\mathrm{let}\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\:\mid\mathrm{x}−\mathrm{y}\mid+\sqrt{\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{y}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\mathrm{0}\:+\:\sqrt{\left(\mathrm{x}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{x}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$\Rightarrow\:\sqrt{\mathrm{x}^{\mathrm{2}} −\mathrm{6x}+\mathrm{9}+\mathrm{x}^{\mathrm{2}} +\mathrm{2x}+\mathrm{1}} \\ $$$$\Rightarrow\sqrt{\mathrm{2x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{10}}\:=\:\sqrt{\mathrm{2}\left(\mathrm{x}^{\mathrm{2}} −\mathrm{2x}+\mathrm{5}\right)} \\ $$$$=\:\sqrt{\mathrm{2}\left(\left(\mathrm{x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{4}\right)}\:\geqslant\:\sqrt{\mathrm{2}.\mathrm{4}}\:\geqslant\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\mathrm{minimum}\:\mathrm{value}\:\mathrm{2}\sqrt{\mathrm{2}}\:\Leftarrow\:\mathrm{the}\:\mathrm{answer} \\ $$
Commented by jagoll last updated on 03/Mar/20
$$\mathrm{thank}\:\mathrm{you} \\ $$