Menu Close

Find-minimum-value-of-y-2x-x-2-x-1-x-y-R-Without-Differential-




Question Number 78628 by naka3546 last updated on 19/Jan/20
Find  minimum  value  of         y  =  ((2x)/(x^2  + x + 1))  x , y  ∈  R  Without  Differential
Findminimumvalueofy=2xx2+x+1x,yRWithoutDifferential
Commented by john santu last updated on 19/Jan/20
denominator x^2 +x+1 >0 ∀x∈R  x^2 y+xy+y−2x=0  x^2 y+(y−2)x+y=0  △= (y−2)^2 −4y.y≥0  (y−2)^2 −(2y)^2 ≥0  (3y−2)(−y−2)≥0  (3y−2)(y+2)≤0  −2≤y≤(2/3)  { ((minimum = −2)),((maximum = (2/3))) :}
denominatorx2+x+1>0xRx2y+xy+y2x=0x2y+(y2)x+y=0=(y2)24y.y0(y2)2(2y)20(3y2)(y2)0(3y2)(y+2)02y23{minimum=2maximum=23
Answered by jagoll last updated on 19/Jan/20
lim_(x→∞)  ((2x)/(x^2 +x+1)) = 0  lim_(x→−∞)  ((2x)/(x^2 +x+1)) =0   y_(min)  = 0
limx2xx2+x+1=0limx2xx2+x+1=0ymin=0
Commented by mr W last updated on 19/Jan/20
what do you get when you put x=−1?
whatdoyougetwhenyouputx=1?
Commented by jagoll last updated on 19/Jan/20
x=−1 ⇒y = ((−2)/1) =−2 sir?
x=1y=21=2sir?
Commented by jagoll last updated on 19/Jan/20
well ... what minimum value sir?
wellwhatminimumvaluesir?
Commented by mr W last updated on 19/Jan/20
if x>0: y=(2/(1+x+(1/x)))=(2/(3+((√x)−(1/( (√x))))^2 ))  if x<0: y=(2/(1+x+(1/x)))=(2/(−1−((√(−x))−(1/( (√(−x)))))^2 ))  y(0)=0 and lim_(x→+∞) y=0, y(x>0)>0  ⇒there is a maximum for x>0  it is to see when (√x)=(1/( (√x))), i.e. x=1, y_(max) =(2/3)    y(0)=0 and lim_(x→−∞) y=0, y(x<0)<0  ⇒there is a minimum for x<0  it is to see when (√(−x))=(1/( (√(−x)))), i.e. x=−1, y_(min) =(2/(−1))=−2
ifx>0:y=21+x+1x=23+(x1x)2ifx<0:y=21+x+1x=21(x1x)2y(0)=0andlimx+y=0,y(x>0)>0thereisamaximumforx>0itistoseewhenx=1x,i.e.x=1,ymax=23y(0)=0andlimxy=0,y(x<0)<0thereisaminimumforx<0itistoseewhenx=1x,i.e.x=1,ymin=21=2
Commented by john santu last updated on 19/Jan/20
the last line y _(min )  or y_(max ) ?
thelastlineyminorymax?
Commented by mr W last updated on 19/Jan/20
typo. y_(min)  should be.
typo.yminshouldbe.
Answered by behi83417@gmail.com last updated on 19/Jan/20
(1/y)=((x^2 +x+1)/(2x))=(1/2)(x+(1/x)+1)≥(1/2)(2+1)=(3/2)  ⇒y≤(2/3)
1y=x2+x+12x=12(x+1x+1)12(2+1)=32y23

Leave a Reply

Your email address will not be published. Required fields are marked *