Menu Close

find-n-0-1-2n-1-4-




Question Number 45080 by turbo msup by abdo last updated on 08/Oct/18
find Σ_(n=0) ^∞  (1/((2n+1)^4 ))
findn=01(2n+1)4
Commented by maxmathsup by imad last updated on 08/Oct/18
we have Σ_(n=1) ^∞  (1/n^4 ) =Σ_(n=1) ^∞  (1/((2n)^4 )) +Σ_(n=1) ^∞  (1/((2n+1)^4 ))  =(1/(16))Σ_(n=1) ^∞   (1/n^4 ) +Σ_(n=1) ^∞  (1/((2n+1)^4 )) ⇒Σ_(n=1) ^∞  (1/((2n+1)^4 )) =(1−(1/(16)))Σ_(n=1) ^∞  (1/n^4 )  =((15)/(16)). (π^4 /(90)) =((15 π^4 )/(16 .2 .15.3)) =(π^4 /(32.3)) =(π^4 /(96))  ★ Σ_(n=0) ^∞   (1/((2n+1)^4 )) =(π^4 /(96)) ★
wehaven=11n4=n=11(2n)4+n=11(2n+1)4=116n=11n4+n=11(2n+1)4n=11(2n+1)4=(1116)n=11n4=1516.π490=15π416.2.15.3=π432.3=π496n=01(2n+1)4=π496

Leave a Reply

Your email address will not be published. Required fields are marked *