Question Number 178793 by infinityaction last updated on 21/Oct/22
$$\mathrm{find}\:\:\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}\:=\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{6}!}+\frac{\mathrm{1}}{\mathrm{9}!}+… \\ $$
Answered by aleks041103 last updated on 21/Oct/22
$${w}={e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{3}}} \Rightarrow{w}^{\mathrm{2}} ={w}^{\ast} ,{w}^{\mathrm{3}} =\mathrm{1} \\ $$$${e}^{{w}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}+\frac{{w}}{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\frac{{w}^{\mathrm{2}} }{\left(\mathrm{3}{n}+\mathrm{2}\right)!}={S}_{\mathrm{0}} +{wS}_{\mathrm{1}} +{w}^{\mathrm{2}} {S}_{\mathrm{2}} \\ $$$${e}^{{w}^{\mathrm{2}} } =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}+\frac{{w}^{\mathrm{2}} }{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\frac{{w}}{\left(\mathrm{3}{n}+\mathrm{2}\right)!}={S}_{\mathrm{0}} +{w}^{\mathrm{2}} {S}_{\mathrm{1}} +{wS}_{\mathrm{2}} \\ $$$${e}^{\mathrm{1}} ={S}_{\mathrm{0}} +{S}_{\mathrm{1}} +{S}_{\mathrm{2}} \\ $$$${e}^{{w}} +{e}^{{w}^{\mathrm{2}} } −\mathrm{2}{e}=\left({w}+{w}^{\mathrm{2}} −\mathrm{2}\right)\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} \right)=−\mathrm{3}\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} \right) \\ $$$$\Rightarrow{S}_{\mathrm{0}} ={e}−\left({S}_{\mathrm{1}} +{S}_{\mathrm{2}} \right)={e}+\frac{\left({exp}\left({w}\right)+{exp}\left({w}^{\mathrm{2}} \right)−\mathrm{2}{e}\right)}{\mathrm{3}}= \\ $$$$=\frac{{e}^{\mathrm{1}} +{e}^{{w}} +{e}^{{w}^{\mathrm{2}} } }{\mathrm{3}}={S}_{\mathrm{0}} \\ $$$${w}={e}^{\frac{\mathrm{2}\pi{i}}{\mathrm{3}}} =−\frac{\mathrm{1}}{\mathrm{2}}+{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$${w}^{\mathrm{2}} ={e}^{−\frac{\mathrm{2}\pi{i}}{\mathrm{3}}} =−\frac{\mathrm{1}}{\mathrm{2}}−{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}} \\ $$$$\Rightarrow{e}^{{w}} =\frac{\mathrm{1}}{\:\sqrt{{e}}}{e}^{{i}\sqrt{\mathrm{3}}/\mathrm{2}} ,{e}^{{w}^{\mathrm{2}} } =\frac{\mathrm{1}}{\:\sqrt{{e}}}{e}^{−{i}\sqrt{\mathrm{3}}/\mathrm{2}} \\ $$$$\Rightarrow{e}^{{w}} +{e}^{{w}^{\mathrm{2}} } =\frac{\mathrm{2}}{\:\sqrt{{e}}}{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right) \\ $$$$\Rightarrow\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}=\frac{{e}}{\mathrm{3}}+\frac{\mathrm{2}}{\mathrm{3}\sqrt{{e}}}{cos}\left(\sqrt{\mathrm{3}}/\mathrm{2}\right) \\ $$
Commented by aleks041103 last updated on 21/Oct/22
Commented by Tawa11 last updated on 22/Oct/22
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Commented by infinityaction last updated on 22/Oct/22
$${thanks}\:{sir} \\ $$
Answered by ARUNG_Brandon_MBU last updated on 22/Oct/22
$${S}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{6}!}+\frac{\mathrm{1}}{\mathrm{9}!}+\centerdot\centerdot\centerdot \\ $$$$\:\:\:=\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{3}!}+\frac{\mathrm{1}}{\mathrm{4}!}+\frac{\mathrm{1}}{\mathrm{5}!}+\frac{\mathrm{1}}{\mathrm{6}!}+\frac{\mathrm{1}}{\mathrm{7}!}+\frac{\mathrm{1}}{\mathrm{8}!}+\frac{\mathrm{1}}{\mathrm{9}!}+\centerdot\centerdot\centerdot\right)−\left(\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{4}!}+\frac{\mathrm{1}}{\mathrm{5}!}+\frac{\mathrm{1}}{\mathrm{7}!}+\frac{\mathrm{1}}{\mathrm{8}!}+\centerdot\centerdot\centerdot\right) \\ $$$$\:\:\:\:={e}−\left(\frac{\mathrm{1}}{\mathrm{1}!}+\frac{\mathrm{1}}{\mathrm{4}!}+\frac{\mathrm{1}}{\mathrm{7}!}+\centerdot\centerdot\centerdot\right)−\left(\frac{\mathrm{1}}{\mathrm{2}!}+\frac{\mathrm{1}}{\mathrm{5}!}+\frac{\mathrm{1}}{\mathrm{8}!}+\centerdot\centerdot\centerdot\right)={e}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)!}−\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{2}\right)!} \\ $$$$\Rightarrow{e}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}+\mathrm{2}\right)!} \\ $$$${e}^{{x}} =\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}} }{\left(\mathrm{3}{n}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{1}} }{\left(\mathrm{3}{n}+\mathrm{1}\right)!}+\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{\mathrm{3}{n}+\mathrm{2}} }{\left(\mathrm{3}{n}+\mathrm{2}\right)}\:\Rightarrow{e}^{{x}} ={f}\left({x}\right)+{f}\:'\left({x}\right)+{f}\:''\left({x}\right) \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{n}} }{\left(\mathrm{3}{n}\right)!}\:\mathrm{is}\:\mathrm{solution}\:\mathrm{to}\:\mathrm{this}\:\mathrm{equation}\:\mathrm{with}\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\mathrm{and}\:{f}\:'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${y}_{{gh}} \::\:{r}^{\mathrm{2}} +{r}+\mathrm{1}=\mathrm{0}\:\Rightarrow{r}=−\frac{\mathrm{1}}{\mathrm{2}}\pm{i}\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\:\Rightarrow{y}_{{gh}} ={e}^{−\frac{{x}}{\:\mathrm{2}}} \left(\alpha\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)+\beta\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)\right) \\ $$$${y}_{{p}} ={ke}^{{x}} ={y}_{{p}} '={y}_{{p}} ''\:\Rightarrow{e}^{{x}} ={ke}^{{x}} +{ke}^{{x}} +{ke}^{{x}} \:\Rightarrow{k}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$${f}\left({x}\right)={y}_{{gh}} +{y}_{{p}} \:={e}^{−\frac{{x}}{\mathrm{2}}} \left(\alpha\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)+\beta\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)\right)+\frac{{e}^{{x}} }{\mathrm{3}}\:\:,\:{f}\left(\mathrm{0}\right)=\mathrm{1}\:\Rightarrow\alpha+\frac{\mathrm{1}}{\mathrm{3}}=\mathrm{1}\:\Rightarrow\alpha=\frac{\mathrm{2}}{\mathrm{3}} \\ $$$${f}\:'\left({x}\right)={e}^{−\frac{{x}}{\mathrm{2}}} \left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\beta\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)−\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\alpha\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)\right)−\frac{\mathrm{1}}{\mathrm{2}}{e}^{−\frac{{x}}{\mathrm{2}}} \left(\alpha\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)+\beta\mathrm{sin}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)\right)+\frac{{e}^{{x}} }{\mathrm{3}} \\ $$$${f}\:'\left(\mathrm{0}\right)=\mathrm{0}\:\Rightarrow\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\beta−\frac{\alpha}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}=\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\beta=\mathrm{0}\:\Rightarrow\beta=\mathrm{0}\:\Rightarrow{f}\left({x}\right)={e}^{−\frac{{x}}{\mathrm{2}}} \left(\frac{\mathrm{2}}{\mathrm{3}}\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}{x}\right)\right)+\frac{{e}^{{x}} }{\mathrm{3}} \\ $$$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left(\mathrm{3}{n}\right)!}={f}\left(\mathrm{1}\right)=\frac{\mathrm{2}}{\mathrm{3}\sqrt{{e}}}\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)+\frac{{e}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{3}}\left({e}+\frac{\mathrm{2}}{\:\sqrt{{e}}}\mathrm{cos}\left(\frac{\sqrt{\mathrm{3}}}{\mathrm{2}}\right)\right) \\ $$
Commented by infinityaction last updated on 22/Oct/22
$${thanks} \\ $$