Menu Close

find-n-0-1-3n-1-1-3-1-6-1-9-




Question Number 178793 by infinityaction last updated on 21/Oct/22
find  Σ_(n=0) ^∞  (1/((3n)!)) = 1+(1/(3!))+(1/(6!))+(1/(9!))+...
findn=01(3n)!=1+13!+16!+19!+
Answered by aleks041103 last updated on 21/Oct/22
w=e^((2πi)/3) ⇒w^2 =w^∗ ,w^3 =1  e^w =Σ_(n=0) ^∞ (1/((3n)!))+(w/((3n+1)!))+(w^2 /((3n+2)!))=S_0 +wS_1 +w^2 S_2   e^w^2  =Σ_(n=0) ^∞ (1/((3n)!))+(w^2 /((3n+1)!))+(w/((3n+2)!))=S_0 +w^2 S_1 +wS_2   e^1 =S_0 +S_1 +S_2   e^w +e^w^2  −2e=(w+w^2 −2)(S_1 +S_2 )=−3(S_1 +S_2 )  ⇒S_0 =e−(S_1 +S_2 )=e+(((exp(w)+exp(w^2 )−2e))/3)=  =((e^1 +e^w +e^w^2  )/3)=S_0   w=e^((2πi)/3) =−(1/2)+i((√3)/2)  w^2 =e^(−((2πi)/3)) =−(1/2)−i((√3)/2)  ⇒e^w =(1/( (√e)))e^(i(√3)/2) ,e^w^2  =(1/( (√e)))e^(−i(√3)/2)   ⇒e^w +e^w^2  =(2/( (√e)))cos(((√3)/2))  ⇒Σ_(n=0) ^∞ (1/((3n)!))=(e/3)+(2/(3(√e)))cos((√3)/2)
w=e2πi3w2=w,w3=1ew=n=01(3n)!+w(3n+1)!+w2(3n+2)!=S0+wS1+w2S2ew2=n=01(3n)!+w2(3n+1)!+w(3n+2)!=S0+w2S1+wS2e1=S0+S1+S2ew+ew22e=(w+w22)(S1+S2)=3(S1+S2)S0=e(S1+S2)=e+(exp(w)+exp(w2)2e)3==e1+ew+ew23=S0w=e2πi3=12+i32w2=e2πi3=12i32ew=1eei3/2,ew2=1eei3/2ew+ew2=2ecos(32)n=01(3n)!=e3+23ecos(3/2)
Commented by aleks041103 last updated on 21/Oct/22
Commented by Tawa11 last updated on 22/Oct/22
Great sir
Greatsir
Commented by infinityaction last updated on 22/Oct/22
thanks sir
thankssir
Answered by ARUNG_Brandon_MBU last updated on 22/Oct/22
S=Σ_(n=0) ^∞ (1/((3n)!))=1+(1/(3!))+(1/(6!))+(1/(9!))+∙∙∙     =(1+(1/(1!))+(1/(2!))+(1/(3!))+(1/(4!))+(1/(5!))+(1/(6!))+(1/(7!))+(1/(8!))+(1/(9!))+∙∙∙)−((1/(1!))+(1/(2!))+(1/(4!))+(1/(5!))+(1/(7!))+(1/(8!))+∙∙∙)      =e−((1/(1!))+(1/(4!))+(1/(7!))+∙∙∙)−((1/(2!))+(1/(5!))+(1/(8!))+∙∙∙)=e−Σ_(n=0) ^∞ (1/((3n+1)!))−Σ_(n=0) ^∞ (1/((3n+2)!))  ⇒e=Σ_(n=0) ^∞ (1/((3n)!))+Σ_(n=0) ^∞ (1/((3n+1)!))+Σ_(n=0) ^∞ (1/((3n+2)!))  e^x =Σ_(n=0) ^∞ (x^(3n) /((3n)!))+Σ_(n=0) ^∞ (x^(3n+1) /((3n+1)!))+Σ_(n=0) ^∞ (x^(3n+2) /((3n+2))) ⇒e^x =f(x)+f ′(x)+f ′′(x)  Σ_(n=0) ^∞ (x^n /((3n)!)) is solution to this equation with f(0)=1 and f ′(0)=0  y_(gh)  : r^2 +r+1=0 ⇒r=−(1/2)±i((√3)/2) ⇒y_(gh) =e^(−(x/( 2))) (αcos(((√3)/2)x)+βsin(((√3)/2)x))  y_p =ke^x =y_p ′=y_p ′′ ⇒e^x =ke^x +ke^x +ke^x  ⇒k=(1/3)  f(x)=y_(gh) +y_p  =e^(−(x/2)) (αcos(((√3)/2)x)+βsin(((√3)/2)x))+(e^x /3)  , f(0)=1 ⇒α+(1/3)=1 ⇒α=(2/3)  f ′(x)=e^(−(x/2)) (((√3)/2)βcos(((√3)/2)x)−((√3)/2)αsin(((√3)/2)x))−(1/2)e^(−(x/2)) (αcos(((√3)/2)x)+βsin(((√3)/2)x))+(e^x /3)  f ′(0)=0 ⇒((√3)/2)β−(α/2)+(1/3)=((√3)/2)β=0 ⇒β=0 ⇒f(x)=e^(−(x/2)) ((2/3)cos(((√3)/2)x))+(e^x /3)  Σ_(n=0) ^∞ (1/((3n)!))=f(1)=(2/(3(√e)))cos(((√3)/2))+(e/3)=(1/3)(e+(2/( (√e)))cos(((√3)/2)))
S=n=01(3n)!=1+13!+16!+19!+=(1+11!+12!+13!+14!+15!+16!+17!+18!+19!+)(11!+12!+14!+15!+17!+18!+)=e(11!+14!+17!+)(12!+15!+18!+)=en=01(3n+1)!n=01(3n+2)!e=n=01(3n)!+n=01(3n+1)!+n=01(3n+2)!ex=n=0x3n(3n)!+n=0x3n+1(3n+1)!+n=0x3n+2(3n+2)ex=f(x)+f(x)+f(x)n=0xn(3n)!issolutiontothisequationwithf(0)=1andf(0)=0ygh:r2+r+1=0r=12±i32ygh=ex2(αcos(32x)+βsin(32x))yp=kex=yp=ypex=kex+kex+kexk=13f(x)=ygh+yp=ex2(αcos(32x)+βsin(32x))+ex3,f(0)=1α+13=1α=23f(x)=ex2(32βcos(32x)32αsin(32x))12ex2(αcos(32x)+βsin(32x))+ex3f(0)=032βα2+13=32β=0β=0f(x)=ex2(23cos(32x))+ex3n=01(3n)!=f(1)=23ecos(32)+e3=13(e+2ecos(32))
Commented by infinityaction last updated on 22/Oct/22
thanks
thanks

Leave a Reply

Your email address will not be published. Required fields are marked *