Question Number 29986 by abdo imad last updated on 14/Feb/18
$${find}\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:. \\ $$
Commented by abdo imad last updated on 14/Feb/18
$${let}\:{introduce}\:{for}\:\mid{x}\mid<\mathrm{1}\:\:\:{S}\left({x}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\left({n}+\mathrm{1}\right){x}^{{n}} \:{we}\:{have} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:={S}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\:\:{we}\:{have}\:\:\int_{\mathrm{0}} ^{{x}} \:{S}\left({t}\right){dt}\:=\sum_{{n}=\mathrm{0}} ^{\infty} {x}^{{n}+\mathrm{1}} \:\:+\lambda \\ $$$${x}=\mathrm{0}\:\Rightarrow\lambda=\mathrm{0}\:{and}\:\int_{\mathrm{0}} ^{{x}} \:{S}\left({t}\right){dt}=\sum_{{n}=\mathrm{1}} ^{\infty} {x}^{{n}} \:=\frac{\mathrm{1}}{\mathrm{1}−{x}}\:−\mathrm{1}\:=\frac{{x}}{\mathrm{1}−{x}} \\ $$$$\Rightarrow\:{S}\left({x}\right)=\frac{{d}}{{dx}}\left(\:\frac{{x}}{\mathrm{1}−{x}}\right)=\:\frac{\mathrm{1}−{x}\:−{x}\left(−\mathrm{1}\right)}{\left(\mathrm{1}\:−{x}\right)^{\mathrm{2}} }=\:\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:\Rightarrow \\ $$$${S}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)=\:\frac{\mathrm{1}}{\left(\frac{\mathrm{3}}{\mathrm{4}}\right)^{\mathrm{2}} }\:=\:\frac{\mathrm{16}}{\mathrm{9}}\:\Rightarrow\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{n}+\mathrm{1}}{\mathrm{4}^{{n}} }\:=\:\frac{\mathrm{16}}{\mathrm{9}}\:. \\ $$
Answered by MJS last updated on 14/Feb/18
$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{n}+\mathrm{1}}{{k}^{{n}} }=\frac{{k}^{\mathrm{2}} }{\left({k}−\mathrm{1}\right)^{\mathrm{2}} }\:\mathrm{with}\:{k}>\mathrm{1} \\ $$
Commented by abdo imad last updated on 14/Feb/18
$${you}\:{must}\:{show}\:{your}\:{work}\:{and}\:{your}\:{method}\:{sir}\:{mjs}… \\ $$
Commented by abdo imad last updated on 15/Feb/18
$${we}\:{have}\:{proved}\:{that}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({n}+\mathrm{1}\right){x}^{{n}} \:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }\:{for}\:\mid{x}\mid<\mathrm{1} \\ $$$${and}\:{for}\:{x}=\:\frac{\mathrm{1}}{{k}}\:{with}\:{k}>\mathrm{1}\:{we}\:{obtain} \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{n}+\mathrm{1}}{{k}^{{n}} }\:=\:\frac{\mathrm{1}}{\left(\mathrm{1}−\frac{\mathrm{1}}{{k}}\right)^{\mathrm{2}} }=\:\frac{{k}^{\mathrm{2}} }{\left({k}−\mathrm{1}\right)^{\mathrm{2}} }\:\:. \\ $$