Menu Close

find-n-0-n-1-x-3n-2-calculate-n-0-n-1-8-n-




Question Number 33709 by math khazana by abdo last updated on 22/Apr/18
find  Σ_(n=0) ^∞  (n+1)x^(3n)   2) calculate  Σ_(n=0) ^∞    ((n+1)/8^n ) .
findn=0(n+1)x3n2)calculaten=0n+18n.
Commented by prof Abdo imad last updated on 27/Apr/18
let put for ∣x∣<1 w(x)= Σ_(n=0) ^∞  (n+1)x^(3n)   we have  x^3 w(x)=Σ_(n=0) ^∞ (n+1)(x^3 )^(n+1) =ϕ(x^3 ) with  ϕ(t)=Σ_(n=0) ^∞  (n+1)t^(n+1)   but we have  Σ_(n=0) ^∞  t^n  = (1/(1−t)) ⇒Σ_(n=1) ^∞ n t^(n−1)  = (1/((1−t)^2 )) ⇒  Σ_(n=1) ^∞  n t^n    =  (t/((1−t)^2 )) but ϕ(t)=Σ_(n=1) ^∞ n t^n ⇒  ϕ(t) = (t/((1−t)^2 ))  with ∣t∣<1  ⇒x^3 w(x)= (x^3 /((1−x^3 )^2 ))  ⇒ w(x)= (1/((1−x^3 )^2 ))  2)we have Σ_(n=0) ^∞   ((n+1)/8^n ) = Σ_(n=0) ^∞ (n+1)((1/2))^(3n)   =w((1/2)) =  (1/((1−(1/8))^2 )) = (1/(((7/8))^2 )) = ((64)/(49))  .
letputforx∣<1w(x)=n=0(n+1)x3nwehavex3w(x)=n=0(n+1)(x3)n+1=φ(x3)withφ(t)=n=0(n+1)tn+1butwehaven=0tn=11tn=1ntn1=1(1t)2n=1ntn=t(1t)2butφ(t)=n=1ntnφ(t)=t(1t)2witht∣<1x3w(x)=x3(1x3)2w(x)=1(1x3)22)wehaven=0n+18n=n=0(n+1)(12)3n=w(12)=1(118)2=1(78)2=6449.

Leave a Reply

Your email address will not be published. Required fields are marked *