Menu Close

find-n-0-sin-na-sina-n-x-n-n-with-0-lt-a-lt-pi-




Question Number 33127 by prof Abdo imad last updated on 10/Apr/18
 find  Σ_(n=0) ^∞   ((sin(na))/((sina)^n )) (x^n /(n!))  with 0<a<π .
$$\:{find}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{sin}\left({na}\right)}{\left({sina}\right)^{{n}} }\:\frac{{x}^{{n}} }{{n}!}\:\:{with}\:\mathrm{0}<{a}<\pi\:. \\ $$
Commented by prof Abdo imad last updated on 12/Apr/18
S(x)= Im( Σ_(n=0) ^∞   ((e^(ina)  x^n )/(n!(sina)^n )))  but  w(x) = Σ_(n=0) ^∞    ((e^(ina)  x^n )/(n!(sina)^n )) =Σ_(n=0) ^∞  (1/(n!))  ( ((e^(ia)  x)/(sina)))^n   but we have  Σ_(n=0) ^∞   (u^n /(n!))  =e^u    ∀ u ∈ C ⇒  w(x) =e^((e^(ia) /(sina))x)  = e^((x/(sina))( coa +isina))   = e^((x cosa)/(sins))   e^(ix)  = e^((xcosa)/(sina)) ( cosx +isinx) ⇒  S(x) = sinx e^((xcosa)/(sina))   .
$${S}\left({x}\right)=\:{Im}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{e}^{{ina}} \:{x}^{{n}} }{{n}!\left({sina}\right)^{{n}} }\right)\:\:{but} \\ $$$${w}\left({x}\right)\:=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\:\frac{{e}^{{ina}} \:{x}^{{n}} }{{n}!\left({sina}\right)^{{n}} }\:=\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{{n}!}\:\:\left(\:\frac{{e}^{{ia}} \:{x}}{{sina}}\right)^{{n}} \\ $$$${but}\:{we}\:{have}\:\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:\frac{{u}^{{n}} }{{n}!}\:\:={e}^{{u}} \:\:\:\forall\:{u}\:\in\:{C}\:\Rightarrow \\ $$$${w}\left({x}\right)\:={e}^{\frac{{e}^{{ia}} }{{sina}}{x}} \:=\:{e}^{\frac{{x}}{{sina}}\left(\:{coa}\:+{isina}\right)} \\ $$$$=\:{e}^{\frac{{x}\:{cosa}}{{sins}}} \:\:{e}^{{ix}} \:=\:{e}^{\frac{{xcosa}}{{sina}}} \left(\:{cosx}\:+{isinx}\right)\:\Rightarrow \\ $$$${S}\left({x}\right)\:=\:{sinx}\:{e}^{\frac{{xcosa}}{{sina}}} \:\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *