Menu Close

find-n-0-sin-na-sina-n-x-n-n-with-0-lt-a-lt-pi-




Question Number 33127 by prof Abdo imad last updated on 10/Apr/18
 find  Σ_(n=0) ^∞   ((sin(na))/((sina)^n )) (x^n /(n!))  with 0<a<π .
findn=0sin(na)(sina)nxnn!with0<a<π.
Commented by prof Abdo imad last updated on 12/Apr/18
S(x)= Im( Σ_(n=0) ^∞   ((e^(ina)  x^n )/(n!(sina)^n )))  but  w(x) = Σ_(n=0) ^∞    ((e^(ina)  x^n )/(n!(sina)^n )) =Σ_(n=0) ^∞  (1/(n!))  ( ((e^(ia)  x)/(sina)))^n   but we have  Σ_(n=0) ^∞   (u^n /(n!))  =e^u    ∀ u ∈ C ⇒  w(x) =e^((e^(ia) /(sina))x)  = e^((x/(sina))( coa +isina))   = e^((x cosa)/(sins))   e^(ix)  = e^((xcosa)/(sina)) ( cosx +isinx) ⇒  S(x) = sinx e^((xcosa)/(sina))   .
S(x)=Im(n=0einaxnn!(sina)n)butw(x)=n=0einaxnn!(sina)n=n=01n!(eiaxsina)nbutwehaven=0unn!=euuCw(x)=eeiasinax=exsina(coa+isina)=excosasinseix=excosasina(cosx+isinx)S(x)=sinxexcosasina.

Leave a Reply

Your email address will not be published. Required fields are marked *