Menu Close

find-n-1-1-n-2-by-use-of-integral-0-pi-2-ln-2cos-d-




Question Number 60976 by maxmathsup by imad last updated on 28/May/19
find Σ_(n=1) ^∞  (1/n^2 ) by use of integral ∫_0 ^(π/2) ln(2cosθ)dθ  .
findn=11n2byuseofintegral0π2ln(2cosθ)dθ.
Commented by maxmathsup by imad last updated on 31/May/19
we have ∫_0 ^(π/2) ln(2cosθ)dθ =∫_0 ^(π/2) ln(e^(iθ)  +e^(−iθ) )dθ  =∫_0 ^(π/2) ln{e^(iθ) (1+e^(−2iθ) )}dθ =∫_0 ^(π/2) iθ dθ +∫_0 ^(π/2)  ln(1+e^(−2iθ) )dθ  =i[(θ^2 /2)]_0 ^(π/2)  +∫_0 ^(π/2) ln(1+e^(−2iθ) )dθ =i(π^2 /8) +∫_0 ^(π/2) ln(1+e^(−2iθ) )dθ  we have for ∣z∣≤1 ln^′ (1+z) =(1/(1+z)) =Σ_(n=0) ^∞ (−1)^n z^n  ⇒  ln(1+z) =Σ_(n=0) ^∞  (((−1)^n  z^(n+1) )/(n+1)) +c        (c=0)  =Σ_(n=1) ^∞  (((−1)^(n−1)  z^n )/n)  ⇒∫_0 ^(π/2) ln(1+e^(−2iθ) ) =∫_0 ^(π/2) (Σ_(n=1) ^∞  (((−1)^(n−1) e^(−2inθ) )/n))dθ  =Σ_(n=1) ^∞  (((−1)^(n−1) )/n) ∫_0 ^(π/2)  e^(−2inθ)  dθ  =Σ_(n=1) ^∞   (((−1)^(n−1) )/n) [−(1/(2in)) e^(−2inθ) ]_0 ^(π/2)   =−(1/(2i)) Σ_(n=1) ^∞   (((−1)^(n−1) )/n^2 ){  (−1)^n −1}  =(1/i) Σ_(n=0) ^∞   (1/((2n+1)^2 )) =−i Σ_(n=0) ^∞   (1/((2n+1)^2 )) ⇒  ∫_0 ^(π/2) ln(2cosθ)dθ =i((π^2 /8) − Σ_(n=0) ^∞  (1/((2n+1)^2 )))  but this integral is  real ⇒(π^2 /8) −Σ_(n=0) ^∞  (1/((2n+1)^2 )) =0 ⇒Σ_(n=0) ^∞   (1/((2n+1)^2 )) =(π^2 /8)  we have Σ_(n=1) ^∞  (1/n^2 ) =(1/4) Σ_(n=1) ^∞  (1/n^2 ) +Σ_(n=0) ^∞  (1/((2n+1)^2 )) ⇒  (3/4) Σ_(n=1) ^∞  (1/n^2 ) =(π^2 /8) ⇒ Σ_(n=1) ^∞  (1/n^2 ) =(4/3)(π^2 /8) =(π^2 /6) .
wehave0π2ln(2cosθ)dθ=0π2ln(eiθ+eiθ)dθ=0π2ln{eiθ(1+e2iθ)}dθ=0π2iθdθ+0π2ln(1+e2iθ)dθ=i[θ22]0π2+0π2ln(1+e2iθ)dθ=iπ28+0π2ln(1+e2iθ)dθwehaveforz∣⩽1ln(1+z)=11+z=n=0(1)nznln(1+z)=n=0(1)nzn+1n+1+c(c=0)=n=1(1)n1znn0π2ln(1+e2iθ)=0π2(n=1(1)n1e2inθn)dθ=n=1(1)n1n0π2e2inθdθ=n=1(1)n1n[12ine2inθ]0π2=12in=1(1)n1n2{(1)n1}=1in=01(2n+1)2=in=01(2n+1)20π2ln(2cosθ)dθ=i(π28n=01(2n+1)2)butthisintegralisrealπ28n=01(2n+1)2=0n=01(2n+1)2=π28wehaven=11n2=14n=11n2+n=01(2n+1)234n=11n2=π28n=11n2=43π28=π26.

Leave a Reply

Your email address will not be published. Required fields are marked *