find-n-1-1-n-2-by-use-of-integral-0-pi-2-ln-2cos-d- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 60976 by maxmathsup by imad last updated on 28/May/19 find∑n=1∞1n2byuseofintegral∫0π2ln(2cosθ)dθ. Commented by maxmathsup by imad last updated on 31/May/19 wehave∫0π2ln(2cosθ)dθ=∫0π2ln(eiθ+e−iθ)dθ=∫0π2ln{eiθ(1+e−2iθ)}dθ=∫0π2iθdθ+∫0π2ln(1+e−2iθ)dθ=i[θ22]0π2+∫0π2ln(1+e−2iθ)dθ=iπ28+∫0π2ln(1+e−2iθ)dθwehavefor∣z∣⩽1ln′(1+z)=11+z=∑n=0∞(−1)nzn⇒ln(1+z)=∑n=0∞(−1)nzn+1n+1+c(c=0)=∑n=1∞(−1)n−1znn⇒∫0π2ln(1+e−2iθ)=∫0π2(∑n=1∞(−1)n−1e−2inθn)dθ=∑n=1∞(−1)n−1n∫0π2e−2inθdθ=∑n=1∞(−1)n−1n[−12ine−2inθ]0π2=−12i∑n=1∞(−1)n−1n2{(−1)n−1}=1i∑n=0∞1(2n+1)2=−i∑n=0∞1(2n+1)2⇒∫0π2ln(2cosθ)dθ=i(π28−∑n=0∞1(2n+1)2)butthisintegralisreal⇒π28−∑n=0∞1(2n+1)2=0⇒∑n=0∞1(2n+1)2=π28wehave∑n=1∞1n2=14∑n=1∞1n2+∑n=0∞1(2n+1)2⇒34∑n=1∞1n2=π28⇒∑n=1∞1n2=43π28=π26. Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 1-1-2-1-2-1-4-1-2-1-8-1-2-1-16-1-2-1-16-1-2-1-16-1-2-1-16-1-2-1-2-1-4-1-2-1-8-1-2-1-8-1-1-2-1-2-1Next Next post: fog-x-4x-1-g-x-x-2-f-x- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.