Menu Close

find-n-1-1-n-n-1-2-n-1-




Question Number 33124 by prof Abdo imad last updated on 10/Apr/18
find Σ_(n=1) ^∞    (1/(n(n+1)2^(n−1) )) .
findn=11n(n+1)2n1.
Commented by prof Abdo imad last updated on 15/Apr/18
let consider S(x)= Σ_(n=1) ^∞   (x^n /(n(n+1))) with ∣x∣<1  S(x)= Σ_(n=1) ^∞ ( (1/n) −(1/(n+1)))x^n    = Σ_(n=1) ^∞   (x^n /n) −Σ_(n=1) ^∞   (x^n /(n+1)) but   Σ_(n=1) ^∞  (x^n /n) =−ln∣1−x∣  and  Σ_(n=1) ^∞   (x^n /(n+1)) = Σ_(n=2) ^∞   (x^(n−1) /n) = (1/x) Σ_(n=2) ^∞  (x^n /n)  =(1/x)(  Σ_(n=1) ^∞   (x^n /n) −x) =(1/x) Σ_(n=1) ^∞  (x^n /n) −1  =−((ln∣1−x∣)/x) −1 ⇒  S(x) =−ln∣1−x∣ + ((ln∣1−x∣)/x) +1  = ((1−x)/x)ln∣1−x∣ −1  for x=(1/2) we get  Σ_(n=1) ^∞     (1/(n(n+1)2^n ))  = 2(1−(1/2))ln((1/2)) +1   = −ln(2)+1 ⇒ (1/2) Σ_(n=1) ^∞   (1/(n(n+1)^ 2^(n−1) )) =1−ln(2)  ⇒ Σ_(n=1) ^∞    (1/(n(n+1)2^(n−1) )) = 2 −2ln(2)
letconsiderS(x)=n=1xnn(n+1)withx∣<1S(x)=n=1(1n1n+1)xn=n=1xnnn=1xnn+1butn=1xnn=ln1xandn=1xnn+1=n=2xn1n=1xn=2xnn=1x(n=1xnnx)=1xn=1xnn1=ln1xx1S(x)=ln1x+ln1xx+1=1xxln1x1forx=12wegetn=11n(n+1)2n=2(112)ln(12)+1=ln(2)+112n=11n(n+1)2n1=1ln(2)n=11n(n+1)2n1=22ln(2)

Leave a Reply

Your email address will not be published. Required fields are marked *