Menu Close

find-n-1-1-n-n-2-




Question Number 38108 by maxmathsup by imad last updated on 21/Jun/18
find Σ_(n=1) ^∞   (((−1)^n )/n^2 )
$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$
Commented by prof Abdo imad last updated on 24/Jun/18
let S=Σ_(n=1) ^∞   (((−1)^n )/n^2 )  S= Σ_(n=1) ^∞   (1/(4n^2 )) −Σ_(n=0) ^∞  (1/((2n+1)^2 ))  =(1/4) (π^2 /6) −(π^2 /8) = (π^2 /(24)) −((3π^2 )/(24)) =−(π^2 /(12))  S=−(π^2 /(12)) .
$${let}\:{S}=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$$${S}=\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\mathrm{1}}{\mathrm{4}{n}^{\mathrm{2}} }\:−\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:−\frac{\pi^{\mathrm{2}} }{\mathrm{8}}\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{24}}\:−\frac{\mathrm{3}\pi^{\mathrm{2}} }{\mathrm{24}}\:=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}} \\ $$$${S}=−\frac{\pi^{\mathrm{2}} }{\mathrm{12}}\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *