Menu Close

find-n-1-1-n-n-2-n-1-3-n-2-4-




Question Number 116555 by Bird last updated on 04/Oct/20
find  Σ_(n=1) ^∞  (((−1)^n )/(n^2 (n+1)^3 (n+2)^4 ))
findn=1(1)nn2(n+1)3(n+2)4
Answered by Olaf last updated on 05/Oct/20
R(n) = (1/(n^2 (n+1)^3 (n+2)^4 ))  R(n) = −(5/(16)).(1/n)+(1/(16)).(1/n^2 )+(5/(n+1))−(2/((n+1)^2 ))  +(1/((n+1)^3 ))−((75)/(16)).(1/(n+2))−((39)/(16)).(1/((n+2)^2 ))  −(1/((n+2)^3 ))−(1/4).(1/((n+2)^4 ))    Σ_(n=1) ^∞ (((−1)^n )/n) = −ln2  Σ_(n=1) ^∞ (((−1)^n )/n^2 ) = −(π^2 /(12))  Σ_(n=1) ^∞ (((−1)^n )/n^3 ) = −(3/(12))ξ(3)  Σ_(n=1) ^∞ (((−1)^n )/n^4 ) = −((7π^4 )/(720))    S = −(5/(16))(−ln2)+(1/(16))(−(π^2 /(12)))+5(−ln2+1)  −2(−(π^2 /(12))+1)+(−(3/(12))ξ(3)+1)−((75)/(16))(−ln2+1−(1/2))  −((39)/(16))(−(π^2 /(12))+1−(1/4))−(−(3/(12))ξ(3)+1−(1/8))  −(1/4)(−((7π^4 )/(720))+1−(1/(16)))  S = ln2((5/(16))−5+((75)/(16)))  −(π^2 /(12))((1/(16))−2−((39)/(16)))  −(3/(12))ξ(3)(1−1)+((7π^4 )/(2880))  +5−2+1−((75)/(32))−((117)/(64))−(7/8)−((15)/(64))  S = ((35π^2 )/(96))+((7π^4 )/(2880))−((41)/(32))    Please mister verify the calculous.
R(n)=1n2(n+1)3(n+2)4R(n)=516.1n+116.1n2+5n+12(n+1)2+1(n+1)37516.1n+23916.1(n+2)21(n+2)314.1(n+2)4n=1(1)nn=ln2n=1(1)nn2=π212n=1(1)nn3=312ξ(3)n=1(1)nn4=7π4720S=516(ln2)+116(π212)+5(ln2+1)2(π212+1)+(312ξ(3)+1)7516(ln2+112)3916(π212+114)(312ξ(3)+118)14(7π4720+1116)S=ln2(5165+7516)π212(11623916)312ξ(3)(11)+7π42880+52+1753211764781564S=35π296+7π428804132Pleasemisterverifythecalculous.
Commented by mathmax by abdo last updated on 05/Oct/20
thank you sir.
thankyousir.

Leave a Reply

Your email address will not be published. Required fields are marked *