Question Number 38942 by math khazana by abdo last updated on 01/Jul/18
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{cos}\left({nx}\right)\:{and}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{sin}\left({nx}\right) \\ $$
Commented by prof Abdo imad last updated on 09/Jul/18
$${let}\:{f}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{cos}\left({nx}\right) \\ $$$${f}\left({x}\right)\:={Re}\left(\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}\:{e}^{{inx}} \right)={Re}\left({w}\left({x}\right)\right) \\ $$$${w}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−{e}^{{ix}} \right)^{{n}} }{{n}}\:=−{ln}\left(\mathrm{1}+{e}^{{ix}} \right) \\ $$$$\left(\:\Sigma\:\frac{{z}^{{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{z}\right)\right)\:\:{but} \\ $$$${ln}\left(\mathrm{1}+{e}^{{ix}} \right)\:={ln}\left(\:\mathrm{1}\:+{cosx}\:+{isinx}\right) \\ $$$$={ln}\left(\mathrm{2}{cos}^{\mathrm{2}} \left(\frac{{x}}{\mathrm{2}}\right)\:+\mathrm{2}{i}\:{sin}\left(\frac{{x}}{\mathrm{2}}\right){cos}\left(\frac{{x}}{\mathrm{2}}\right)\right) \\ $$$$={ln}\left(\mathrm{2}\right)\:+{ln}\left(\:{cos}\left(\frac{{x}}{\mathrm{2}}\right){e}^{\frac{{ix}}{\mathrm{2}}} \right) \\ $$$$={ln}\left(\mathrm{2}\right)\:+{ln}\left({cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)\:+\frac{{ix}}{\mathrm{2}}\:\Rightarrow \\ $$$${w}\left({x}\right)=−{ln}\left(\mathrm{2}{cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)−\frac{{ix}}{\mathrm{2}}\:\Rightarrow \\ $$$${f}\left({x}\right)=−{ln}\left(\mathrm{2}{cos}\left(\frac{{x}}{\mathrm{2}}\right)\right)\:{also}\:{we}\:{get} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}}{sin}\left({nx}\right)=−\frac{{x}}{\mathrm{2}}\:\:. \\ $$