Menu Close

find-n-1-4n-2n-1-2-2n-1-2-




Question Number 38323 by math khazana by abdo last updated on 24/Jun/18
find Σ_(n=1) ^(+∞)    ((4n)/((2n−1)^2 (2n+1)^2 ))
findn=1+4n(2n1)2(2n+1)2
Commented by math khazana by abdo last updated on 25/Jun/18
we see that 2n+1+2n−1=4n so the fraction  F(x)=((4x)/((2x−1)^2 (2x+1)^2 )) have decomposition  at form F(x)= (a/((2x−1)^2 )) + (b/((2x+1)^2 ))  a=lim_(x→(1/2))  (2x−1)^2  F(x)= (2/4) =(1/2)  b=lim_(x→−(1/2)) (2x+1)^2 F(x)=−(1/2)  S_n =Σ_(k=1) ^n  ((4k)/((2k−1)^2 (2k+1)^2 ))  =(1/2)Σ_(k=1) ^n   (1/((2k−1)^2 )) −(1/2)Σ_(k=1) ^n  (1/((2k+1)^2 ))  =−(1/2)Σ_(k=1) ^n  (u_(k+1) −u_k    )  (u_k = (1/((2k−1)^2 )))  =−(1/2){u_(n+1)  −u_1 }=−(1/2){  (1/((2n+1)^2 ))  −1}  = (1/2) −(1/(2(2n+1)^2 )) ⇒lim_(n→+∞)  S_n =(1/2)
weseethat2n+1+2n1=4nsothefractionF(x)=4x(2x1)2(2x+1)2havedecompositionatformF(x)=a(2x1)2+b(2x+1)2a=limx12(2x1)2F(x)=24=12b=limx12(2x+1)2F(x)=12Sn=k=1n4k(2k1)2(2k+1)2=12k=1n1(2k1)212k=1n1(2k+1)2=12k=1n(uk+1uk)(uk=1(2k1)2)=12{un+1u1}=12{1(2n+1)21}=1212(2n+1)2limn+Sn=12
Answered by tanmay.chaudhury50@gmail.com last updated on 25/Jun/18
=(1/2){Σ_(n=1) ^(+∞) (1/((2n−1)^2 ))−(1/((2n+1)^2 ))}  (1/2){((1/1^2 )+(1/3^2 )+(1/5^2 )+....)−((1/3^2 )+(1/5^2 )+(1/7^2 )+...)}  =(1/2) i made a?mistake...  (2n+1)^2 −(2n−1)^2 =4×2n×1=8n  but in problem ((4n)/((2n+1)^2 (2n−1)^2 ))  so(1/2){(1/((2n−1)^2 ))−(1/((2n+1)^2 ))} so (1/2) factor should  be there...  or methld  2s=(1/1^2 )−(1/3^2 )  +(1/3^2 )−(1/5^2 )  ....  ....  +(1/((2n−1)^2 ))−(1/((2n+1)^2 ))  2S_n =1−(1/((2n+1)^2 ))   When n→∞S_n =1  =(1/2)ANS
=12{+n=11(2n1)21(2n+1)2}12{(112+132+152+.)(132+152+172+)}=12imadea?mistake(2n+1)2(2n1)2=4×2n×1=8nbutinproblem4n(2n+1)2(2n1)2so12{1(2n1)21(2n+1)2}so12factorshouldbethereormethld2s=112132+132152..+1(2n1)21(2n+1)22Sn=11(2n+1)2WhennSn=1=12ANS

Leave a Reply

Your email address will not be published. Required fields are marked *