Menu Close

find-n-1-arctan-2-16n-2-8n-2-




Question Number 31422 by abdo imad last updated on 08/Mar/18
find Σ_(n=1) ^∞  arctan((2/(16n^2  +8n−2))).
$${find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left(\frac{\mathrm{2}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}−\mathrm{2}}\right). \\ $$
Commented by rahul 19 last updated on 08/Mar/18
can u plz provide sol. for this one .
$${can}\:{u}\:{plz}\:{provide}\:{sol}.\:{for}\:{this}\:{one}\:. \\ $$
Commented by prof Abdo imad last updated on 08/Mar/18
you can use  u_n  =4n+3 and v_n =4n−1 .
$${you}\:{can}\:{use}\:\:{u}_{{n}} \:=\mathrm{4}{n}+\mathrm{3}\:{and}\:{v}_{{n}} =\mathrm{4}{n}−\mathrm{1}\:. \\ $$
Commented by rahul 19 last updated on 08/Mar/18
but for this in question numerator  should be 4 : !.
$${but}\:{for}\:{this}\:{in}\:{question}\:{numerator} \\ $$$${should}\:{be}\:\mathrm{4}\::\:!. \\ $$
Commented by abdo imad last updated on 08/Mar/18
the Q.is find Σ_(n=1) ^∞  arctan( (4/(16n^2  +8n −2)))
$${the}\:{Q}.{is}\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:{arctan}\left(\:\frac{\mathrm{4}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}\:−\mathrm{2}}\right) \\ $$
Commented by rahul 19 last updated on 09/Mar/18
yes sir! now its clear and cut.
$${yes}\:{sir}!\:{now}\:{its}\:{clear}\:{and}\:{cut}. \\ $$
Commented by abdo imad last updated on 09/Mar/18
let put S_N =Σ_(n=1) ^N  arctan(  (4/(16n^2  +8n −2)))let introduce  u_n =4n+3 we have u_(n−1) =4(n−1)+3=4n−1 and  ((u_n  −u_(n−1) )/(1+u_n .u_(n−1) ))= (4/(1+(4n+3)(4n−1)))= (4/(1+16n^2  −4n +12n−3))  = (4/(16n^2  +8n −2))  then let use the ch.u_n =tan(v_n )⇒  v_n =arctan(u_n )⇒ S_N =Σ_(n=1) ^N  arctan(((tan(v_n )−tan(v_(n−1) ))/(1+tan(v_n )tan(v_(n−1) ))))  =Σ_(n=1) ^N  arctan(tan(v_n −v_(n−1) )=Σ_(n=1) ^N v_n  −v_(n−1)   =v_N  −v_0 =artan(4N+3)−artan(3)⇒  lim_(N→∞)  S_N =(π/2)  −artan(3) .
$${let}\:{put}\:{S}_{{N}} =\sum_{{n}=\mathrm{1}} ^{{N}} \:{arctan}\left(\:\:\frac{\mathrm{4}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}\:−\mathrm{2}}\right){let}\:{introduce} \\ $$$${u}_{{n}} =\mathrm{4}{n}+\mathrm{3}\:{we}\:{have}\:{u}_{{n}−\mathrm{1}} =\mathrm{4}\left({n}−\mathrm{1}\right)+\mathrm{3}=\mathrm{4}{n}−\mathrm{1}\:{and} \\ $$$$\frac{{u}_{{n}} \:−{u}_{{n}−\mathrm{1}} }{\mathrm{1}+{u}_{{n}} .{u}_{{n}−\mathrm{1}} }=\:\frac{\mathrm{4}}{\mathrm{1}+\left(\mathrm{4}{n}+\mathrm{3}\right)\left(\mathrm{4}{n}−\mathrm{1}\right)}=\:\frac{\mathrm{4}}{\mathrm{1}+\mathrm{16}{n}^{\mathrm{2}} \:−\mathrm{4}{n}\:+\mathrm{12}{n}−\mathrm{3}} \\ $$$$=\:\frac{\mathrm{4}}{\mathrm{16}{n}^{\mathrm{2}} \:+\mathrm{8}{n}\:−\mathrm{2}}\:\:{then}\:{let}\:{use}\:{the}\:{ch}.{u}_{{n}} ={tan}\left({v}_{{n}} \right)\Rightarrow \\ $$$${v}_{{n}} ={arctan}\left({u}_{{n}} \right)\Rightarrow\:{S}_{{N}} =\sum_{{n}=\mathrm{1}} ^{{N}} \:{arctan}\left(\frac{{tan}\left({v}_{{n}} \right)−{tan}\left({v}_{{n}−\mathrm{1}} \right)}{\mathrm{1}+{tan}\left({v}_{{n}} \right){tan}\left({v}_{{n}−\mathrm{1}} \right)}\right) \\ $$$$=\sum_{{n}=\mathrm{1}} ^{{N}} \:{arctan}\left({tan}\left({v}_{{n}} −{v}_{{n}−\mathrm{1}} \right)=\sum_{{n}=\mathrm{1}} ^{{N}} {v}_{{n}} \:−{v}_{{n}−\mathrm{1}} \right. \\ $$$$={v}_{{N}} \:−{v}_{\mathrm{0}} ={artan}\left(\mathrm{4}{N}+\mathrm{3}\right)−{artan}\left(\mathrm{3}\right)\Rightarrow \\ $$$${lim}_{{N}\rightarrow\infty} \:{S}_{{N}} =\frac{\pi}{\mathrm{2}}\:\:−{artan}\left(\mathrm{3}\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *