Menu Close

Find-n-1-ln-n-




Question Number 164240 by HongKing last updated on 15/Jan/22
Find:   Σ_(n=1) ^∞  ln (n) = ?
$$\mathrm{Find}:\:\:\:\underset{\boldsymbol{\mathrm{n}}=\mathrm{1}} {\overset{\infty} {\sum}}\:\mathrm{ln}\:\left(\mathrm{n}\right)\:=\:? \\ $$
Answered by mathmax by abdo last updated on 15/Jan/22
this serie diverges to +∞
$$\mathrm{this}\:\mathrm{serie}\:\mathrm{diverges}\:\mathrm{to}\:+\infty \\ $$
Answered by alephzero last updated on 15/Jan/22
Σ_(n=1) ^∞ ln n = ?  ln 1 + ln 2 + ... = ln (1 ∙ 2...) =  = ln (Π_(k=1) ^∞ k)  ⇒ Σ_(n=1) ^∞ ln n = ln (Π_(k=1) ^∞ k)  lim_(x→∞) (Π_(k=1) ^x k) = ∞  lim_(x→∞) (ln x) = ∞  ⇒ Σ_(n=1) ^∞ ln n = ∞
$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{ln}\:{n}\:=\:? \\ $$$$\mathrm{ln}\:\mathrm{1}\:+\:\mathrm{ln}\:\mathrm{2}\:+\:…\:=\:\mathrm{ln}\:\left(\mathrm{1}\:\centerdot\:\mathrm{2}…\right)\:= \\ $$$$=\:\mathrm{ln}\:\left(\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}{k}\right) \\ $$$$\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{ln}\:{n}\:=\:\mathrm{ln}\:\left(\underset{{k}=\mathrm{1}} {\overset{\infty} {\prod}}{k}\right) \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\underset{{k}=\mathrm{1}} {\overset{{x}} {\prod}}{k}\right)\:=\:\infty \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{ln}\:{x}\right)\:=\:\infty \\ $$$$\Rightarrow\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{ln}\:{n}\:=\:\infty \\ $$
Commented by HongKing last updated on 15/Jan/22
thank you so much dear Sir
$$\mathrm{thank}\:\mathrm{you}\:\mathrm{so}\:\mathrm{much}\:\mathrm{dear}\:\mathrm{Sir} \\ $$
Commented by alephzero last updated on 16/Jan/22
You are welcome, Sir.
$$\mathrm{You}\:\mathrm{are}\:\mathrm{welcome},\:\mathrm{Sir}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *