Menu Close

find-n-1-n-n-1-3-n-




Question Number 30049 by abdo imad last updated on 15/Feb/18
find Σ_(n=1) ^∞  ((n(n+1))/3^n ) .
findn=1n(n+1)3n.
Commented by prof Abdo imad last updated on 16/Feb/18
we have proved that  Σ_(n=0) ^∞ (n+1)x^n  = (1/((1−x)^2 ))  for ∣x∣<1 due to uniform convergence on [0,1]  by derivation  Σ_(n=1) ^∞  n(n+1)x^(n−1) =(d/dx)((1−x)^(−2) )  = (−2)(−1)(1−x)^(−3) = (2/((1−x)^3 )) ⇒  Σ_(n=1) ^∞ n(n+1)x^n = ((2x)/((1−x)^3 )) and for x=(1/3) we get  Σ_(n=1) ^∞  ((n(n+1))/3^n ) = ((2/3)/(((2/3))^3 )) = (1/(((2/3))^2 )) = (9/4) =.
wehaveprovedthatn=0(n+1)xn=1(1x)2forx∣<1duetouniformconvergenceon[0,1]byderivationn=1n(n+1)xn1=ddx((1x)2)=(2)(1)(1x)3=2(1x)3n=1n(n+1)xn=2x(1x)3andforx=13wegetn=1n(n+1)3n=23(23)3=1(23)2=94=.

Leave a Reply

Your email address will not be published. Required fields are marked *