Question Number 29973 by abdo imad last updated on 14/Feb/18
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$
Commented by abdo imad last updated on 16/Feb/18
$${let}\:{put}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({n}\alpha\right)}{{n}}{x}^{{n}} \:{due}\:{to}\:{uniform}\:{convergence} \\ $$$${we}\:{have}\:{S}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{sin}\left({n}\alpha\right){x}^{{n}−\mathrm{1}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\left({n}+\mathrm{1}\right)\alpha\right){x}^{{n}} \\ $$$$={Im}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{{i}\left({n}+\mathrm{1}\right)\alpha} \:{x}^{{n}} \right)={Im}\left(\:{e}^{{i}\alpha} \:\sum_{{n}=\mathrm{0}} ^{\infty} \left(\:{x}\:{e}^{{i}\alpha} \right)^{{n}} \right)\:{we}\:{have} \\ $$$$\mid{x}\:{e}^{{i}\alpha} \mid<\mathrm{1}\Rightarrow\:{e}^{{i}\alpha} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({xe}^{{i}\alpha} \right)^{{n}} \:=\:{e}^{{i}\alpha} \:\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{i}\alpha} }\:=\:\frac{\mathrm{1}}{{e}^{−{i}\alpha} \:−{x}} \\ $$$$\:=\frac{\mathrm{1}}{{cos}\alpha\:−{i}\:{sin}\alpha\:−{x}}\:\:=\frac{\mathrm{1}}{{cos}\alpha−{x}\:−{isin}\alpha} \\ $$$$=\:\:\frac{{cos}\alpha\:−{x}\:+{i}\:{sin}\alpha}{\left({cos}\alpha−{x}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:\Rightarrow{Im}\left(\Sigma\left(…\right)\right)=\:\:\frac{{sin}\alpha}{\left({x}−{cos}\alpha\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\Rightarrow \\ $$$${S}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\:\:\:\:\:\frac{{sin}\alpha}{\left({t}−{cos}\alpha\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \alpha}{dt}\:+\lambda\:{but}\:\lambda={S}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${the}\:{ch}\:.\:{t}−{cos}\alpha\:={sin}\alpha\:{u}\:{give} \\ $$$${S}\left({x}\right)\:=\int_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}} \:\:\:\:\:\:\:\:\frac{{sin}\alpha}{{sin}^{\mathrm{2}} {u}^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:{sin}\alpha{du} \\ $$$$=\:\int_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}\:\:} \:\:\:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\:=\:\left[\:{arctanu}\right]_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}} \\ $$$$=\:{artan}\left(\frac{{x}−{cos}\alpha}{{sin}\alpha}\right)\:+{artan}\left({cotan}\alpha\right)\:. \\ $$