Menu Close

find-n-1-sin-n-n-x-n-with-1-lt-x-lt-1-




Question Number 29973 by abdo imad last updated on 14/Feb/18
find  Σ_(n=1) ^∞   ((sin(nα))/n) x^n  with  −1<x<1.
findn=1sin(nα)nxnwith1<x<1.
Commented by abdo imad last updated on 16/Feb/18
let put S(x)=Σ_(n=1) ^∞  ((sin(nα))/n)x^n  due to uniform convergence  we have S^′ (x)=Σ_(n=1) ^∞  sin(nα)x^(n−1) =Σ_(n=0) ^∞  sin((n+1)α)x^n   =Im( Σ_(n=0) ^∞   e^(i(n+1)α)  x^n )=Im( e^(iα)  Σ_(n=0) ^∞ ( x e^(iα) )^n ) we have  ∣x e^(iα) ∣<1⇒ e^(iα)  Σ_(n=0) ^∞  (xe^(iα) )^n  = e^(iα)  (1/(1−xe^(iα) )) = (1/(e^(−iα)  −x))   =(1/(cosα −i sinα −x))  =(1/(cosα−x −isinα))  =  ((cosα −x +i sinα)/((cosα−x)^2  +sin^2 α)) ⇒Im(Σ(...))=  ((sinα)/((x−cosα)^2  +sin^2 α))⇒  S(x)=∫_0 ^x       ((sinα)/((t−cosα)^2 +sin^2 α))dt +λ but λ=S(0)=0  the ch . t−cosα =sinα u give  S(x) =∫_(−cotanα) ^((x−cosα)/(sinα))         ((sinα)/(sin^2 u^2  +sin^2 α)) sinαdu  = ∫_(−cotanα) ^(((x−cosα)/(sinα))  )        (du/(1+u^2 ))  = [ arctanu]_(−cotanα) ^((x−cosα)/(sinα))   = artan(((x−cosα)/(sinα))) +artan(cotanα) .
letputS(x)=n=1sin(nα)nxnduetouniformconvergencewehaveS(x)=n=1sin(nα)xn1=n=0sin((n+1)α)xn=Im(n=0ei(n+1)αxn)=Im(eiαn=0(xeiα)n)wehavexeiα∣<1eiαn=0(xeiα)n=eiα11xeiα=1eiαx=1cosαisinαx=1cosαxisinα=cosαx+isinα(cosαx)2+sin2αIm(Σ())=sinα(xcosα)2+sin2αS(x)=0xsinα(tcosα)2+sin2αdt+λbutλ=S(0)=0thech.tcosα=sinαugiveS(x)=cotanαxcosαsinαsinαsin2u2+sin2αsinαdu=cotanαxcosαsinαdu1+u2=[arctanu]cotanαxcosαsinα=artan(xcosαsinα)+artan(cotanα).

Leave a Reply

Your email address will not be published. Required fields are marked *