Menu Close

find-n-1-sin-n-n-x-n-with-1-lt-x-lt-1-




Question Number 29973 by abdo imad last updated on 14/Feb/18
find  Σ_(n=1) ^∞   ((sin(nα))/n) x^n  with  −1<x<1.
$${find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\alpha\right)}{{n}}\:{x}^{{n}} \:{with}\:\:−\mathrm{1}<{x}<\mathrm{1}. \\ $$
Commented by abdo imad last updated on 16/Feb/18
let put S(x)=Σ_(n=1) ^∞  ((sin(nα))/n)x^n  due to uniform convergence  we have S^′ (x)=Σ_(n=1) ^∞  sin(nα)x^(n−1) =Σ_(n=0) ^∞  sin((n+1)α)x^n   =Im( Σ_(n=0) ^∞   e^(i(n+1)α)  x^n )=Im( e^(iα)  Σ_(n=0) ^∞ ( x e^(iα) )^n ) we have  ∣x e^(iα) ∣<1⇒ e^(iα)  Σ_(n=0) ^∞  (xe^(iα) )^n  = e^(iα)  (1/(1−xe^(iα) )) = (1/(e^(−iα)  −x))   =(1/(cosα −i sinα −x))  =(1/(cosα−x −isinα))  =  ((cosα −x +i sinα)/((cosα−x)^2  +sin^2 α)) ⇒Im(Σ(...))=  ((sinα)/((x−cosα)^2  +sin^2 α))⇒  S(x)=∫_0 ^x       ((sinα)/((t−cosα)^2 +sin^2 α))dt +λ but λ=S(0)=0  the ch . t−cosα =sinα u give  S(x) =∫_(−cotanα) ^((x−cosα)/(sinα))         ((sinα)/(sin^2 u^2  +sin^2 α)) sinαdu  = ∫_(−cotanα) ^(((x−cosα)/(sinα))  )        (du/(1+u^2 ))  = [ arctanu]_(−cotanα) ^((x−cosα)/(sinα))   = artan(((x−cosα)/(sinα))) +artan(cotanα) .
$${let}\:{put}\:{S}\left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{{sin}\left({n}\alpha\right)}{{n}}{x}^{{n}} \:{due}\:{to}\:{uniform}\:{convergence} \\ $$$${we}\:{have}\:{S}^{'} \left({x}\right)=\sum_{{n}=\mathrm{1}} ^{\infty} \:{sin}\left({n}\alpha\right){x}^{{n}−\mathrm{1}} =\sum_{{n}=\mathrm{0}} ^{\infty} \:{sin}\left(\left({n}+\mathrm{1}\right)\alpha\right){x}^{{n}} \\ $$$$={Im}\left(\:\sum_{{n}=\mathrm{0}} ^{\infty} \:\:{e}^{{i}\left({n}+\mathrm{1}\right)\alpha} \:{x}^{{n}} \right)={Im}\left(\:{e}^{{i}\alpha} \:\sum_{{n}=\mathrm{0}} ^{\infty} \left(\:{x}\:{e}^{{i}\alpha} \right)^{{n}} \right)\:{we}\:{have} \\ $$$$\mid{x}\:{e}^{{i}\alpha} \mid<\mathrm{1}\Rightarrow\:{e}^{{i}\alpha} \:\sum_{{n}=\mathrm{0}} ^{\infty} \:\left({xe}^{{i}\alpha} \right)^{{n}} \:=\:{e}^{{i}\alpha} \:\frac{\mathrm{1}}{\mathrm{1}−{xe}^{{i}\alpha} }\:=\:\frac{\mathrm{1}}{{e}^{−{i}\alpha} \:−{x}} \\ $$$$\:=\frac{\mathrm{1}}{{cos}\alpha\:−{i}\:{sin}\alpha\:−{x}}\:\:=\frac{\mathrm{1}}{{cos}\alpha−{x}\:−{isin}\alpha} \\ $$$$=\:\:\frac{{cos}\alpha\:−{x}\:+{i}\:{sin}\alpha}{\left({cos}\alpha−{x}\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:\Rightarrow{Im}\left(\Sigma\left(…\right)\right)=\:\:\frac{{sin}\alpha}{\left({x}−{cos}\alpha\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\Rightarrow \\ $$$${S}\left({x}\right)=\int_{\mathrm{0}} ^{{x}} \:\:\:\:\:\:\frac{{sin}\alpha}{\left({t}−{cos}\alpha\right)^{\mathrm{2}} +{sin}^{\mathrm{2}} \alpha}{dt}\:+\lambda\:{but}\:\lambda={S}\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${the}\:{ch}\:.\:{t}−{cos}\alpha\:={sin}\alpha\:{u}\:{give} \\ $$$${S}\left({x}\right)\:=\int_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}} \:\:\:\:\:\:\:\:\frac{{sin}\alpha}{{sin}^{\mathrm{2}} {u}^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:{sin}\alpha{du} \\ $$$$=\:\int_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}\:\:} \:\:\:\:\:\:\:\frac{{du}}{\mathrm{1}+{u}^{\mathrm{2}} }\:\:=\:\left[\:{arctanu}\right]_{−{cotan}\alpha} ^{\frac{{x}−{cos}\alpha}{{sin}\alpha}} \\ $$$$=\:{artan}\left(\frac{{x}−{cos}\alpha}{{sin}\alpha}\right)\:+{artan}\left({cotan}\alpha\right)\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *