Menu Close

find-n-1-sin-nx-n-




Question Number 28614 by abdo imad last updated on 27/Jan/18
find  Σ_(n=1) ^∞   ((sin(nx))/n).
findn=1sin(nx)n.
Commented by abdo imad last updated on 30/Jan/18
let developp the function f(x)=(x/2)periodic by 2π and odd  f(x) = Σ_(n=1) ^∞ a_n sin(nx) and a_n = (2/(2π)) ∫_([T])  (x/2) sin(nx)dx  =(1/π) ∫_0 ^π  x sin(nx)dx and by parts  π a_n =((−x)/n)cos(nx)]_0 ^π  − ∫_0 ^π ((−1)/n)cos(nx)dx  =((−π)/n)(−1)^n   +(1/n^2 )[sin(nx)]_0 ^π  = ((π(−1)^(n−1) )/n)  so  a_n =(((−1)^(n−1) )/n)  and   (x/2)= Σ_(n=1) ^∞   (((−1)^(n−1) )/n) sin(nx)  let do thech.=π−t so  ((π−t)/2)=Σ_(n=1) ^∞ (((−1)^(n−1) )/n)sin(nπ−nt)  but  sin(nπ−nt)=sin(nπ)cos(nt)−cos(nπ)sin(nt)  =(−1)^(n−1) sin(nt)⇒ ((π−t)/2) =Σ_(n=1) ^∞   ((sin(nt))/n) finally we have  Σ_(n=1) ^∞   ((sin(nx))/n) = ((π−x)/2)  .
letdeveloppthefunctionf(x)=x2periodicby2πandoddf(x)=n=1ansin(nx)andan=22π[T]x2sin(nx)dx=1π0πxsin(nx)dxandbypartsπan=xncos(nx)]0π0π1ncos(nx)dx=πn(1)n+1n2[sin(nx)]0π=π(1)n1nsoan=(1)n1nandx2=n=1(1)n1nsin(nx)letdothech.=πtsoπt2=n=1(1)n1nsin(nπnt)butsin(nπnt)=sin(nπ)cos(nt)cos(nπ)sin(nt)=(1)n1sin(nt)πt2=n=1sin(nt)nfinallywehaven=1sin(nx)n=πx2.
Commented by abdo imad last updated on 30/Jan/18
the convergence of this serie is assured by Abel Dirichlet  theorem let remember this theorem.if Σ a_n (x)v_n (x)is a   serie of function  (  a_n >0 and v_n >0)/ a_(n ) decrease and a_n (x)_(n→∞) →0  and∃ m>0 / ∣Σ_(k=n_0 ) ^n  v_k (x)∣≤m so the serie converges.
theconvergenceofthisserieisassuredbyAbelDirichlettheoremletrememberthistheorem.ifΣan(x)vn(x)isaserieoffunction(an>0andvn>0)/andecreaseandan(x)n0andm>0/k=n0nvk(x)∣⩽msotheserieconverges.

Leave a Reply

Your email address will not be published. Required fields are marked *