Menu Close

Find-n-1-tan-1-1-n-2-




Question Number 165215 by HongKing last updated on 27/Jan/22
Find:   Σ_(n=1) ^∞  tan^(−1)  ((1/n^2 ))
Find:n=1tan1(1n2)
Answered by mindispower last updated on 27/Jan/22
S=Σtan^(−1) ((1/n^2 ))=Σ_(n≥1) arg(n^2 +i)=argΠ_(n≥1) (1+(i/n^2 ))  ((sin(πx))/(πx))=Π_(n≥1) (1−(x^2 /n^2 ))  x=e^((i3π)/4)   ((sin(−(π/( (√2)))+((iπ)/( (√2)))))/(πe^((3iπ)/4) ))=Π_(n≥1) (1+(i/n^2 ))  =((sin(−(π/( (√2))))cos(((iπ)/( (√3))))+cos((π/( (√2))))sin(((iπ)/( (√2)))))/(πe^((3iπ)/4) ))  =(e^(−((3iπ)/4)) /π)(sin((π/( (√2))))ch((π/( (√2))))+ish((π/( (√2))))cos((π/( (√2)))))  =−(1/(π(√2)))(sin((π/( (√2))))ch((π/( (√2))))−sh((π/( (√2))))cos((π/( (√2))))+i(sin((π/( (√2))))ch((π/( (√2))))+sh((π/( (√2))))cos((π/( (√2)))))  S=arg{−(1/(π(√2)))(sin((π/( (√2))))ch((π/( (√2))))−sh((π/( (√2))))cos((π/( (√2))))+i(sin((π/( (√2))))ch((π/( (√2))))+sh((π/( (√2))))cos((π/( (√2)))))}      S=tan^(−1) (((1+th((π/( (√2))))cot((π/( (√2)))))/(1−th((π/( (√2))))cot((π/( (√2)))))))  Σ_(n≥1) tan^(−1) ((1/n^2 ))=tan^(−1) (((1+th((π/( (√2))))cot((π/( (√2)))))/(1−th((π/( (√2))))cot((π/( (√2)))))))
S=Σtan1(1n2)=n1arg(n2+i)=argn1(1+in2)sin(πx)πx=n1(1x2n2)x=ei3π4sin(π2+iπ2)πe3iπ4=n1(1+in2)=sin(π2)cos(iπ3)+cos(π2)sin(iπ2)πe3iπ4=e3iπ4π(sin(π2)ch(π2)+ish(π2)cos(π2))=1π2(sin(π2)ch(π2)sh(π2)cos(π2)+i(sin(π2)ch(π2)+sh(π2)cos(π2))S=arg{1π2(sin(π2)ch(π2)sh(π2)cos(π2)+i(sin(π2)ch(π2)+sh(π2)cos(π2))}S=tan1(1+th(π2)cot(π2)1th(π2)cot(π2))n1tan1(1n2)=tan1(1+th(π2)cot(π2)1th(π2)cot(π2))
Commented by HongKing last updated on 28/Jan/22
very nice solution thank you dear Sir
verynicesolutionthankyoudearSirverynicesolutionthankyoudearSir
Commented by mindispower last updated on 28/Jan/22
Withe Pleasur have a nice day
WithePleasurhaveanicedayWithePleasurhaveaniceday

Leave a Reply

Your email address will not be published. Required fields are marked *