Menu Close

find-n-1-u-n-n-if-u-n-u-n-1-u-n-1-




Question Number 119754 by Bird last updated on 26/Oct/20
find Σ_(n=1) ^∞  (u_n /(n!)) if  u_n  =u_(n+1) +u_(n−1)
findn=1unn!ifun=un+1+un1
Commented by Dwaipayan Shikari last updated on 26/Oct/20
u_n =u_(n+1) +u_(n−1)   r^n =r^(n+1) +r^(n−1)   1=r+(1/r)⇒r^2 −r+1=0⇒r=((1±i(√3))/2)=e^(±((iπ)/3))   u_n =Υe^((iπn)/3) +Λe^(−((iπn)/3))   Σ_(n=1) ^∞ (u_n /(n!))=ΥΣ_(n=1) ^∞ (((e^((iπ)/3) )^n )/(n!))+ΛΣ_(n=1) ^∞ (((e^((−iπ)/3) )^n )/(n!))  =Υ(e^e^((iπ)/3)  −1)+Λ(e^e^((−iπ)/3)  −1)
un=un+1+un1rn=rn+1+rn11=r+1rr2r+1=0r=1±i32=e±iπ3un=Υeiπn3+Λeiπn3n=1unn!=Υn=1(eiπ3)nn!+Λn=1(eiπ3)nn!=Υ(eeiπ31)+Λ(eeiπ31)
Commented by talminator2856791 last updated on 27/Oct/20
 WOW that is a very beautiful answer  where do you learn that?
WOWthatisaverybeautifulanswerwheredoyoulearnthat?
Commented by Dwaipayan Shikari last updated on 27/Oct/20
Σ_(n=1) ^∞ (x^n /(n!)) =e^x −1  Here x=e^((iπ)/3)   and  e^((−iπ)/3)            :)           :)
n=1xnn!=ex1Herex=eiπ3andeiπ3:):)
Answered by Olaf last updated on 26/Oct/20
u_(n+1) −u_n +u_(n−1)  = 0  r^2 −r+1 = 0  Δ = (−1)^2 −4(1)(1) = −3  r = ((1±(√3)i)/2) = e^(±i(π/3))   u_n  = λe^(+in(π/3)) +μe^(−in(π/3))   (λ and μ depend on u_0  and u_1 )  S = Σ_(n=1) ^∞ (u_n /(n!)) = λΣ_(n=0) ^∞ (((e^(i(π/3)) )^n )/(n!))+μΣ_(n=0) ^∞ (((e^(−i(π/3)) )^n )/(n!))−u_0   S = λe^((1/2)+i((√3)/2)) +μe^((1/2)−i((√3)/2)) −u_0   S = (√e)(λe^(i((√3)/2)) +μe^(−i((√3)/2)) )−u_0   with :  u_0  = λ+μ  u_1  = λe^(i(π/3)) +μe^(−i(π/3))    { (),() :}
un+1un+un1=0r2r+1=0Δ=(1)24(1)(1)=3r=1±3i2=e±iπ3un=λe+inπ3+μeinπ3(λandμdependonu0andu1)S=n=1unn!=λn=0(eiπ3)nn!+μn=0(eiπ3)nn!u0S=λe12+i32+μe12i32u0S=e(λei32+μei32)u0with:u0=λ+μu1=λeiπ3+μeiπ3{
Answered by mathmax by abdo last updated on 26/Oct/20
u_n =u_(n+1) +u_(n−1)  ⇒u_(n+1) −u_n +u_(n−1) =0 ⇒u_(n+2) −u_(n+1) +u_n =0  →r^2 −r +1 =0 →Δ=1−4 =−3 ⇒r_1 =((1+i(√3))/2) =e^((iπ)/3)   r_2 =((1−i(√3))/2)=e^(−((iπ)/3))  ⇒u_n =ar_1 ^n  +br_1 ^n  =ae^((inπ)/3)  +be^(−i((nπ)/3))   ⇒Σ_(n=1) ^∞  (u_n /n) =a Σ_(n=1) ^∞  (e^((inπ)/3) /n) +bΣ_(n=1) ^∞  (e^(−((inπ)/3)) /n)  let determine f(z) =Σ_(n=1) ^∞  (z^n /n)  we have  for ∣z∣<1  f^′ (z)=Σ_(n=1) ^∞  z^(n−1)  =Σ_(n=0) ^∞   z^n  =(1/(1−z)) ⇒f(z) =−ln(1−z)+c  c=f(0)=0 ⇒Σ_(n=1) ^∞  (z^n /n)=−ln(1−z) ⇒  Σ_(n=1) ^∞  (u_n /n) =−aln(1−e^((iπ)/3) )−bln(1−e^(−((iπ)/3)) ) we have  ln(1−e^((iπ)/3) )=ln(1−cos((π/3))−isin((π/3)))  =ln(2sin^2 ((π/6))−2isin((π/6))cos((π/6)))  =ln(−2isin((π/6))e^((iπ)/6) ) =ln(2)+ln(−i)+ln(sin(π/6))+((iπ)/6)  =ln(2)−((iπ)/2) +ln(sin((π/6)))+((iπ)/6)  ln(1−e^(−((iπ)/3)) ) =ln(1−cos((π/3))+isin((π/3)))  =ln(2sin^2 ((π/6))+2isin((π/6))cos((π/6)))  =ln(2isin((π/6))e^(−((iπ)/6)) )=ln(2)+ln(i)+ln(sin((π/6)))−((iπ)/6)  =ln(2)+((iπ)/2) +ln(sin((π/2)))−((iπ)/6) ⇒  Σ_(n=1) ^∞  (u_n /n) =−a{ln(2)−((iπ)/2)+ln((1/2))+((iπ)/6)}−b{ln(2)+((iπ)/2)+ln((1/2))−((iπ)/6)}  =−ai((π/6)−(π/2))−bi((π/2)−(π/6))  =−ai(−(π/3))−bi((π/3)) =(a−b)i(π/3)    a and b can be found by initial conditions
un=un+1+un1un+1un+un1=0un+2un+1+un=0r2r+1=0Δ=14=3r1=1+i32=eiπ3r2=1i32=eiπ3un=ar1n+br1n=aeinπ3+beinπ3n=1unn=an=1einπ3n+bn=1einπ3nletdeterminef(z)=n=1znnwehaveforz∣<1f(z)=n=1zn1=n=0zn=11zf(z)=ln(1z)+cc=f(0)=0n=1znn=ln(1z)n=1unn=aln(1eiπ3)bln(1eiπ3)wehaveln(1eiπ3)=ln(1cos(π3)isin(π3))=ln(2sin2(π6)2isin(π6)cos(π6))=ln(2isin(π6)eiπ6)=ln(2)+ln(i)+ln(sinπ6)+iπ6=ln(2)iπ2+ln(sin(π6))+iπ6ln(1eiπ3)=ln(1cos(π3)+isin(π3))=ln(2sin2(π6)+2isin(π6)cos(π6))=ln(2isin(π6)eiπ6)=ln(2)+ln(i)+ln(sin(π6))iπ6=ln(2)+iπ2+ln(sin(π2))iπ6n=1unn=a{ln(2)iπ2+ln(12)+iπ6}b{ln(2)+iπ2+ln(12)iπ6}=ai(π6π2)bi(π2π6)=ai(π3)bi(π3)=(ab)iπ3aandbcanbefoundbyinitialconditions
Commented by mathmax by abdo last updated on 27/Oct/20
sorry i have solved Σ (u_n /n)  not Σ (u_n /(n!))...!
sorryihavesolvedΣunnnotΣunn!!
Commented by mathmax by abdo last updated on 27/Oct/20
we have u_n =ae^((inπ)/3)  +be^(−((inπ)/3))  ⇒  Σ_(n=1) ^∞  (u_n /(n!)) =a Σ_(n=1) ^∞ (((e^((iπ)/3) )^n )/(n!)) +b Σ_(n=1) ^∞  (((e^(−((iπ)/3)) )^n )/(n!))  =a( e^e^((iπ)/3)  −1) +b(e^e^(−((iπ)/3))  −1)  =a{e^((1/2)+((i(√3))/2)) −1)+b(e^((1/2)−((i(√3))/2)) −1)  =a e^(1/2) (cos(((√3)/2))+isin(((√3)/(2 ))))+be^(1/2) (cos(((√3)/2))−isin(((√3)/2)))−(a+b)  =(a+b)(√e)cos(((√3)/2))+i(a−b)(√e)sin(((√3)/2))−(a+b)
wehaveun=aeinπ3+beinπ3n=1unn!=an=1(eiπ3)nn!+bn=1(eiπ3)nn!=a(eeiπ31)+b(eeiπ31)=a{e12+i321)+b(e12i321)=ae12(cos(32)+isin(32))+be12(cos(32)isin(32))(a+b)=(a+b)ecos(32)+i(ab)esin(32)(a+b)

Leave a Reply

Your email address will not be published. Required fields are marked *