Menu Close

find-n-2-1-1-n-2-




Question Number 33305 by abdo imad last updated on 14/Apr/18
find Σ_(n=2) ^∞  (1 −(1/n^2 ))
findn=2(11n2)
Commented by prof Abdo imad last updated on 15/Apr/18
the Q is find Σ_(n=2) ^∞  ln(1−(1/n^2 ))
theQisfindn=2ln(11n2)
Commented by abdo imad last updated on 19/Apr/18
let put S_n = Σ_(k=2) ^n ln(1−(1/k^2 ))  we have S_n =ln(Π_(k=2) ^n  (1−(1/k^2 ))) but we have  Π_(k=2) ^n  (1−(1/k^2 )) = Π_(k=2) ^n  ((k^2 −1)/k^2 ) =Π_(k=2) ^n  ((k−1)/k) .((k+1)/k)  =((1/2) (2/3) (3/4) ....((n−2)/(n−1)) ((n−1)/n))((3/2) (4/3) (5/4) ....(n/(n−1)) ((n+1)/n))  =(1/n) ((n+1)/2) =((n+1)/(2n)) ⇒ S_n  =ln(((n+1)/(2n)))⇒lim_(n→+∞ ) S_n =−ln(2)  so Σ_(n=2) ^∞ ln(1−(1/n^2 ))=−ln(2) .
letputSn=k=2nln(11k2)wehaveSn=ln(k=2n(11k2))butwehavek=2n(11k2)=k=2nk21k2=k=2nk1k.k+1k=(122334.n2n1n1n)(324354.nn1n+1n)=1nn+12=n+12nSn=ln(n+12n)limn+Sn=ln(2)son=2ln(11n2)=ln(2).

Leave a Reply

Your email address will not be published. Required fields are marked *