Question Number 23928 by Tinkutara last updated on 10/Nov/17
$$\mathrm{Find}\:^{{n}} {C}_{\mathrm{1}} \:−\:\frac{\mathrm{1}}{\mathrm{2}}\:^{{n}} {C}_{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{3}}\:^{{n}} {C}_{\mathrm{3}} \:−\:….\:+ \\ $$$$\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{\mathrm{1}}{{n}}\:\centerdot\:^{{n}} {C}_{{n}} . \\ $$
Commented by prakash jain last updated on 10/Nov/17
$$\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}=\frac{\mathrm{1}}{{x}}\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{i}−\mathrm{1}} \:^{{n}} {C}_{{i}} {x}^{{i}} \right) \\ $$$$\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}=\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{i}−\mathrm{1}} \:^{{n}} {C}_{{i}} {x}^{{i}−\mathrm{1}} \right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{i}−\mathrm{1}} \:^{{n}} {C}_{{i}} {x}^{{i}−\mathrm{1}} \right){dx} \\ $$$$\mathrm{RHS}\:=\:{required}\:{sum} \\ $$$$\mathrm{LHS}={result} \\ $$
Commented by prakash jain last updated on 10/Nov/17
$$\mathrm{Yes}.\:\mathrm{Result}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{integral} \\ $$$$\mathrm{but}\:\mathrm{it}\:\mathrm{may}\:\mathrm{not}\:\mathrm{be}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{you} \\ $$$$\mathrm{are}\:\mathrm{looking}\:\mathrm{for}. \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}?\:\mathrm{We}\:\mathrm{can}\:\mathrm{use}\:\mathrm{another} \\ $$$$\mathrm{approach}\:\mathrm{to}\:\mathrm{reduce}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\mathrm{to}\:\mathrm{required}\:\mathrm{form}. \\ $$
Commented by prakash jain last updated on 11/Nov/17
$$\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}=\mathrm{1}+\left(\mathrm{1}−{x}\right)+\left(\mathrm{1}−{x}\right)^{\mathrm{2}} +..+\left(\mathrm{1}−{x}\right)^{{n}−\mathrm{1}} \\ $$$$\mathrm{RHS}\:\mathrm{is}\:\mathrm{GP}\:{with}\:{a}=\mathrm{1},{r}=\mathrm{1}−{x}=\frac{\mathrm{1}\left(\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} \right)}{\mathrm{1}−\left(\mathrm{1}−{x}\right)} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}{dx} \\ $$$$=\left[{x}−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:−\:\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{3}}\:−…−\frac{\left(\mathrm{1}−{x}\right)^{{n}} }{{n}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$
Commented by Tinkutara last updated on 11/Nov/17
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$