Menu Close

Find-n-C-1-1-2-n-C-2-1-3-n-C-3-1-n-1-1-n-n-C-n-




Question Number 23928 by Tinkutara last updated on 10/Nov/17
Find^n C_1  − (1/2)^n C_2  + (1/3)^n C_3  − .... +  (−1)^(n−1) (1/n) ∙^n C_n .
$$\mathrm{Find}\:^{{n}} {C}_{\mathrm{1}} \:−\:\frac{\mathrm{1}}{\mathrm{2}}\:^{{n}} {C}_{\mathrm{2}} \:+\:\frac{\mathrm{1}}{\mathrm{3}}\:^{{n}} {C}_{\mathrm{3}} \:−\:….\:+ \\ $$$$\left(−\mathrm{1}\right)^{{n}−\mathrm{1}} \frac{\mathrm{1}}{{n}}\:\centerdot\:^{{n}} {C}_{{n}} . \\ $$
Commented by prakash jain last updated on 10/Nov/17
((1−(1−x)^n )/x)=(1/x)(Σ_(i=1) ^n  (−1)^(i−1) ^n C_i x^i )  ((1−(1−x)^n )/x)=(Σ_(i=1) ^n  (−1)^(i−1) ^n C_i x^(i−1) )  ∫_0 ^1 ((1−(1−x)^n )/x)dx=∫_0 ^1 (Σ_(i=1) ^n  (−1)^(i−1) ^n C_i x^(i−1) )dx  RHS = required sum  LHS=result
$$\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}=\frac{\mathrm{1}}{{x}}\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{i}−\mathrm{1}} \:^{{n}} {C}_{{i}} {x}^{{i}} \right) \\ $$$$\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}=\left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{i}−\mathrm{1}} \:^{{n}} {C}_{{i}} {x}^{{i}−\mathrm{1}} \right) \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}{dx}=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\:\left(−\mathrm{1}\right)^{{i}−\mathrm{1}} \:^{{n}} {C}_{{i}} {x}^{{i}−\mathrm{1}} \right){dx} \\ $$$$\mathrm{RHS}\:=\:{required}\:{sum} \\ $$$$\mathrm{LHS}={result} \\ $$
Commented by prakash jain last updated on 10/Nov/17
Yes. Result is the value of integral  but it may not be the answer you  are looking for.    What is the answer? We can use another  approach to reduce the expression  to required form.
$$\mathrm{Yes}.\:\mathrm{Result}\:\mathrm{is}\:\mathrm{the}\:\mathrm{value}\:\mathrm{of}\:\mathrm{integral} \\ $$$$\mathrm{but}\:\mathrm{it}\:\mathrm{may}\:\mathrm{not}\:\mathrm{be}\:\mathrm{the}\:\mathrm{answer}\:\mathrm{you} \\ $$$$\mathrm{are}\:\mathrm{looking}\:\mathrm{for}. \\ $$$$ \\ $$$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:\mathrm{answer}?\:\mathrm{We}\:\mathrm{can}\:\mathrm{use}\:\mathrm{another} \\ $$$$\mathrm{approach}\:\mathrm{to}\:\mathrm{reduce}\:\mathrm{the}\:\mathrm{expression} \\ $$$$\mathrm{to}\:\mathrm{required}\:\mathrm{form}. \\ $$
Commented by prakash jain last updated on 11/Nov/17
((1−(1−x)^n )/x)=1+(1−x)+(1−x)^2 +..+(1−x)^(n−1)   RHS is GP with a=1,r=1−x=((1(1−(1−x)^n ))/(1−(1−x)))  ∫_0 ^1 ((1−(1−x)^n )/x)dx  =[x−(((1−x)^2 )/2) − (((1−x)^3 )/3) −...−(((1−x)^n )/n)]_0 ^1   =1+(1/2)+(1/3)+...+(1/n)
$$\frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}=\mathrm{1}+\left(\mathrm{1}−{x}\right)+\left(\mathrm{1}−{x}\right)^{\mathrm{2}} +..+\left(\mathrm{1}−{x}\right)^{{n}−\mathrm{1}} \\ $$$$\mathrm{RHS}\:\mathrm{is}\:\mathrm{GP}\:{with}\:{a}=\mathrm{1},{r}=\mathrm{1}−{x}=\frac{\mathrm{1}\left(\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} \right)}{\mathrm{1}−\left(\mathrm{1}−{x}\right)} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}−\left(\mathrm{1}−{x}\right)^{{n}} }{{x}}{dx} \\ $$$$=\left[{x}−\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{2}} }{\mathrm{2}}\:−\:\frac{\left(\mathrm{1}−{x}\right)^{\mathrm{3}} }{\mathrm{3}}\:−…−\frac{\left(\mathrm{1}−{x}\right)^{{n}} }{{n}}\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+…+\frac{\mathrm{1}}{{n}} \\ $$
Commented by Tinkutara last updated on 11/Nov/17
Thank you very much Sir!
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{very}\:\mathrm{much}\:\mathrm{Sir}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *