Menu Close

find-n-in-ordre-to-have-7-divide-n-3-n-2-




Question Number 31043 by abdo imad last updated on 02/Mar/18
find n in ordre to have 7 divide n^3  +n−2
$${find}\:{n}\:{in}\:{ordre}\:{to}\:{have}\:\mathrm{7}\:{divide}\:{n}^{\mathrm{3}} \:+{n}−\mathrm{2} \\ $$
Commented by MJS last updated on 03/Mar/18
the sequence of remains of  n^3 /7 is ⟨1,1,6,1,6,6,0,...⟩  n/7 is ⟨1,2,3,4,5,6,0,...⟩  their sum−2 is  ⟨0,1,0,3,2,3,5,...⟩  so the solution is  ⟨1,3,8,10,15,17,...⟩  ={1+7k∣k∈N}∪{3+7k∣k∈N}
$$\mathrm{the}\:\mathrm{sequence}\:\mathrm{of}\:\mathrm{remains}\:\mathrm{of} \\ $$$${n}^{\mathrm{3}} /\mathrm{7}\:\mathrm{is}\:\langle\mathrm{1},\mathrm{1},\mathrm{6},\mathrm{1},\mathrm{6},\mathrm{6},\mathrm{0},…\rangle \\ $$$${n}/\mathrm{7}\:\mathrm{is}\:\langle\mathrm{1},\mathrm{2},\mathrm{3},\mathrm{4},\mathrm{5},\mathrm{6},\mathrm{0},…\rangle \\ $$$$\mathrm{their}\:\mathrm{sum}−\mathrm{2}\:\mathrm{is} \\ $$$$\langle\mathrm{0},\mathrm{1},\mathrm{0},\mathrm{3},\mathrm{2},\mathrm{3},\mathrm{5},…\rangle \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{is} \\ $$$$\langle\mathrm{1},\mathrm{3},\mathrm{8},\mathrm{10},\mathrm{15},\mathrm{17},…\rangle \\ $$$$=\left\{\mathrm{1}+\mathrm{7}{k}\mid{k}\in\mathbb{N}\right\}\cup\left\{\mathrm{3}+\mathrm{7}{k}\mid{k}\in\mathbb{N}\right\} \\ $$
Commented by rahul 19 last updated on 02/Mar/18
1.
$$\mathrm{1}. \\ $$
Commented by MJS last updated on 03/Mar/18
k∈Z is possible too
$${k}\in\mathbb{Z}\:\mathrm{is}\:\mathrm{possible}\:\mathrm{too} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *