Menu Close

Find-n-N-n-100-4-2-n-n-3-Note-that-S-denotes-the-cardinality-or-number-of-elements-of-a-set-S-




Question Number 112011 by Aina Samuel Temidayo last updated on 05/Sep/20
Find ∣{n∈N∣n≤100, 4!∣2^n −n^3 }∣.  (Note that ∣S∣ denotes the cardinality  or number of elements of a set,S).
Find{nNn100,4!2nn3}.(NotethatSdenotesthecardinalityornumberofelementsofaset,S).
Answered by Rasheed.Sindhi last updated on 07/Sep/20
n may be odd or even.  ^▶ n=2k+1       2^n −n^3 =2^(2k+1) −(2k+1)^3        =2.4^k −(8k^3 +1+3(2k)(2k+1))       =2.4^k −8k^3 −1−12k^2 −6k       =2.4^k −8k^3 −12k^2 −6k−1      =an odd number(not divisible                                       by  4)  ^▶ n=2k         2^n −n^3 =2^(2k) −(2k)^3                         =4^k −8k^3                         =4(4^(k−1) −2k^3 )  ^▶ Hence only for n∈E        4 ∣ 2^n −n^3   ^▶ Even numbers upto 100 is 50  This proves that  ∣{n∈N∣n≤100, 4!∣2^n −n^3 }∣=50  Recall that I considerd      N={1,2,3,...}   ( If we consider     N={0,1,2,3,...}      Then the answer is 51)
nmaybeoddoreven.n=2k+12nn3=22k+1(2k+1)3=2.4k(8k3+1+3(2k)(2k+1))=2.4k8k3112k26k=2.4k8k312k26k1=anoddnumber(notdivisibleby4)n=2k2nn3=22k(2k)3=4k8k3=4(4k12k3)HenceonlyfornE42nn3Evennumbersupto100is50Thisprovesthat{nNn100,4!2nn3}∣=50RecallthatIconsiderdN={1,2,3,}(IfweconsiderN={0,1,2,3,}Thentheansweris51)
Commented by Rasheed.Sindhi last updated on 07/Sep/20
Sorry I can′t do it.However  with the help of calculator, the  numbers are 4,10,16,....,6n−2  So the number of these numbers  upto 100 is 17
SorryIcantdoit.Howeverwiththehelpofcalculator,thenumbersare4,10,16,.,6n2Sothenumberofthesenumbersupto100is17
Commented by kaivan.ahmadi last updated on 05/Sep/20
hi dear rasheed  the number in question is 4!=4×3×2×1
hidearrasheedthenumberinquestionis4!=4×3×2×1
Commented by Rasheed.Sindhi last updated on 05/Sep/20
Misreading sir misreading!  I′ll review my answer.  ThanX  dear kaivan!
Misreadingsirmisreading!Illreviewmyanswer.ThanXdearkaivan!
Commented by Aina Samuel Temidayo last updated on 06/Sep/20
Please I′m still waiting for the  correction. Thanks.
PleaseImstillwaitingforthecorrection.Thanks.
Answered by Rasheed.Sindhi last updated on 09/Sep/20
4! ∣ 2^n −n^3   24∣2^n −n^3   2^n ≡n^3 (mod 24)    Let  { ((2^n ≡u(mod 24))),((n^3 ≡v(mod 24)) :}                [(n,(2^n mod 24_((u)) ),(n^3 mod 24_((v)) ),),(1,(         2),(       1),),(2,(        4),(       8),),(3,(        8),(       3),),(4,(      16),(     16),(u=v)),(5,(       8),(      5),),(6,(     16),(      0),),(7,(       8),(     7),),(8,(     16),(     8),),(9,(       8),(     9),),((10),(     16),(   16),(u=v)),((11),(       8),(   11),),((12),(     16),(    0),),((13),(       8),(   13),),((14),(     16),(    8),),((15),(       8),(  15),),((16),(     16),(  16),(u=v)),((17),(       8),(  17),),((18),(     16),(   0),),((19),(       8),(  19),),((20),(     16),(   8),),((21),(      8),(  21),),((22),(    16),(  16),(u=v)),((23),(       8),(  23),),((24),(    16),(   0),) ]  Values of n for which u=v or  2^n ≡n^3 (mod 24) or in other words  4! ∣ 2^n −n^3  are:   4,10,16,...(6n−2)..  This is an AP upto 100 of which  are 17 terms.  ∴ 4! ∣ 2^n −n^3  has 17 solutions       for n∈N ∧ n≤100.
4!2nn3242nn32nn3(mod24)Let{2nu(mod24)n3v(mod24[n2nmod24(u)n3mod24(v)12124838341616u=v58561607878168989101616u=v1181112160138131416815815161616u=v1781718160198192016821821221616u=v2382324160]Valuesofnforwhichu=vor2nn3(mod24)orinotherwords4!2nn3are:4,10,16,(6n2)..ThisisanAPupto100ofwhichare17terms.4!2nn3has17solutionsfornNn100.
Commented by Aina Samuel Temidayo last updated on 07/Sep/20
Can you please complete it?
Canyoupleasecompleteit?
Commented by Rasheed.Sindhi last updated on 09/Sep/20
The Answer is now complete.  Sorry for late.
TheAnswerisnowcomplete.Sorryforlate.
Commented by Aina Samuel Temidayo last updated on 09/Sep/20
Thanks.
Thanks.

Leave a Reply

Your email address will not be published. Required fields are marked *