Menu Close

find-n-N-such-that-5-2n-5-n-0-13-




Question Number 122329 by mathocean1 last updated on 15/Nov/20
find n ∈ N such that  5^(2n) +5^n ≡0[13]
findnNsuchthat52n+5n0[13]
Answered by 676597498 last updated on 15/Nov/20
let x=5^n   ⇒ x^2 +x=0mod(13)  ⇒ (x+(1/2))^2 −(1/4)=0mod(13)  ⇒ (x+(1/2))^2 =(1/4)mod(13)  ⇒ x+(1/2)=(1/2)mod(13) or x+(1/2)=−(1/2)mod(13)  ⇒ x=0mod(13) or x=−1mod(13)  but x=5^n   5^n =0mod(13)  ⇒ n=log_5 (0mod(13))  or   5^n =−1mod(13)=12  ⇒ n=log_5 12
letx=5nx2+x=0mod(13)(x+12)214=0mod(13)(x+12)2=14mod(13)x+12=12mod(13)orx+12=12mod(13)x=0mod(13)orx=1mod(13)butx=5n5n=0mod(13)n=log5(0mod(13))or5n=1mod(13)=12n=log512
Commented by mindispower last updated on 16/Nov/20
x∈N
xN
Answered by MJS_new last updated on 15/Nov/20
5^(2n) +5^n =13m; m∈N  5^n (5^n +1)=13m  5^n ≠13m [obviously]  ⇒ 5^n =13m−1  trying the first few n we get  n=4k+2
52n+5n=13m;mN5n(5n+1)=13m5n13m[obviously]5n=13m1tryingthefirstfewnwegetn=4k+2
Answered by floor(10²Eta[1]) last updated on 16/Nov/20
5^n (5^n +1)≡0(mod13)  5^n ≡0(mod13) ∨ 5^n ≡12(mod 13)  ⇒5^n ≡12(mod13)  n=2⇒5^n =5^2 ≡12(mod13)  5^(n−2) ≡1(mod13)  5^a ≡1(mod13)⇒a∣ϕ(13)=12⇒a=4∴a=4k  ⇒n−2=4k⇒n=4k+2, ∀ k≥0
5n(5n+1)0(mod13)5n0(mod13)5n12(mod13)5n12(mod13)n=25n=5212(mod13)5n21(mod13)5a1(mod13)aφ(13)=12a=4a=4kn2=4kn=4k+2,k0

Leave a Reply

Your email address will not be published. Required fields are marked *