Menu Close

find-n-th-terms-of-lt-1-0-1-0-1-0-gt-




Question Number 164810 by tabata last updated on 22/Jan/22
find n^(th)  terms of <1,0,1,0,1,0,....>
$${find}\:{n}^{{th}} \:{terms}\:{of}\:<\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{0},\mathrm{1},\mathrm{0},….> \\ $$
Commented by mr W last updated on 22/Jan/22
a_n =n (mod 2)  a_n =((1−(−1)^n )/2)  ...
$${a}_{{n}} ={n}\:\left({mod}\:\mathrm{2}\right) \\ $$$${a}_{{n}} =\frac{\mathrm{1}−\left(−\mathrm{1}\right)^{{n}} }{\mathrm{2}} \\ $$$$… \\ $$
Commented by Tawa11 last updated on 22/Jan/22
Great sir
$$\mathrm{Great}\:\mathrm{sir} \\ $$
Answered by alephzero last updated on 24/Jan/22
cos 0 = 1  cos (π/2) = 0  cos π = −1  cos ((3π)/2) = 0  ⇒ a_n  = ∣cos (((n±1)π)/2)∣  Or  sin (π/2) = 1  sin π = 0  sin ((3π)/2) = −1  ⇒ a_n  = ∣sin ((nπ)/2)∣
$$\mathrm{cos}\:\mathrm{0}\:=\:\mathrm{1} \\ $$$$\mathrm{cos}\:\frac{\pi}{\mathrm{2}}\:=\:\mathrm{0} \\ $$$$\mathrm{cos}\:\pi\:=\:−\mathrm{1} \\ $$$$\mathrm{cos}\:\frac{\mathrm{3}\pi}{\mathrm{2}}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{a}_{{n}} \:=\:\mid\mathrm{cos}\:\frac{\left({n}\pm\mathrm{1}\right)\pi}{\mathrm{2}}\mid \\ $$$$\mathrm{Or} \\ $$$$\mathrm{sin}\:\frac{\pi}{\mathrm{2}}\:=\:\mathrm{1} \\ $$$$\mathrm{sin}\:\pi\:=\:\mathrm{0} \\ $$$$\mathrm{sin}\:\frac{\mathrm{3}\pi}{\mathrm{2}}\:=\:−\mathrm{1} \\ $$$$\Rightarrow\:{a}_{{n}} \:=\:\mid\mathrm{sin}\:\frac{{n}\pi}{\mathrm{2}}\mid \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *