Menu Close

find-nature-of-n-2-1-n-n-ln-n-1-n-1-




Question Number 52677 by maxmathsup by imad last updated on 11/Jan/19
find nature of Σ_(n=2) ^∞ (−1)^n (√n)ln(((n+1)/(n−1))).
findnatureofn=2(1)nnln(n+1n1).
Commented by maxmathsup by imad last updated on 08/Feb/19
S =Σ_(n=2) ^∞ (−1)^n V_n    with V_n =(√n)ln(((n+1)/(n−1))) ⇒V_n =(√n)ln(((n−1+2)/(n−1)))  =(√n)ln(1+(2/(n−1))) ∼(√n)(2/(n−1)) =((√n)/( (√(n−1)))) (2/( (√(n−1)))) ∼ (2/( (√(n−1))))  let W_n =(2/( (√(n−1))))   we have W_n >0   W_n  is decreasing and  lim W_n =0  ⇒  Σ (−1)^n W_n  is a alternate serie convergent ⇒ S is convergent.
S=n=2(1)nVnwithVn=nln(n+1n1)Vn=nln(n1+2n1)=nln(1+2n1)n2n1=nn12n12n1letWn=2n1wehaveWn>0WnisdecreasingandlimWn=0Σ(1)nWnisaalternateserieconvergentSisconvergent.
Answered by tanmay.chaudhury50@gmail.com last updated on 12/Jan/19
(T_n /T_(n−1) )=(((−1)^n )/((−1)^(n−1) ))×((√n)/( (√(n−1))))×((ln(((n+1)/(n−1))))/(ln(((n−1+1)/(n−1−1)))))  =(−1)^1 ×(1/( (√(1−(1/n)))))×((ln(((1+(1/n))/(1−(1/n)))))/(ln((1/(1−(2/n))))))  =(−1)×1×((ln(((1+0)/(1−0))))/(ln((1/(1−0)))))  [since n→∞]  =−1×((ln1)/(ln1))  [here (0/0)  is coming]  if we cancell common N_r  and D_r  that is ln1  then given series is convergent...  so others are requested to CHECk...
TnTn1=(1)n(1)n1×nn1×ln(n+1n1)ln(n1+1n11)=(1)1×111n×ln(1+1n11n)ln(112n)=(1)×1×ln(1+010)ln(110)[sincen]=1×ln1ln1[here00iscoming]ifwecancellcommonNrandDrthatisln1thengivenseriesisconvergentsoothersarerequestedtoCHECk

Leave a Reply

Your email address will not be published. Required fields are marked *