Menu Close

find-nature-of-the-serie-1-n-U-n-with-U-n-1-e-U-n-n-1-U-0-1-




Question Number 90743 by abdomathmax last updated on 25/Apr/20
find nature of the serie Σ (−1)^n  U_n   with  U_(n+1) =(e^(−U_n ) /(n+1))     (U_0 =1)
$${find}\:{nature}\:{of}\:{the}\:{serie}\:\Sigma\:\left(−\mathrm{1}\right)^{{n}} \:{U}_{{n}} \\ $$$${with}\:\:{U}_{{n}+\mathrm{1}} =\frac{{e}^{−{U}_{{n}} } }{{n}+\mathrm{1}}\:\:\:\:\:\left({U}_{\mathrm{0}} =\mathrm{1}\right) \\ $$
Answered by ~blr237~ last updated on 25/Apr/20
we can show by induction that  U_n ∈ ]0,1]  so Σ(−1)^n U_n  is an alternated serie then it converges   if (U_n ) decrease and converges to  zero.  we have  e^(−u_n ) <u_(n )  ; (1/(n+1))≤1  then  u_(n+1) <u_n       ∣u_n ∣≤(1/n)  cause  e^(−u_n ) <1  .so  lim_(n→∞)  u_n  =0
$$\left.{w}\left.{e}\:{can}\:{show}\:{by}\:{induction}\:{that}\:\:{U}_{{n}} \in\:\right]\mathrm{0},\mathrm{1}\right] \\ $$$${so}\:\Sigma\left(−\mathrm{1}\right)^{{n}} {U}_{{n}} \:{is}\:{an}\:{alternated}\:{serie}\:{then}\:{it}\:{converges}\: \\ $$$${if}\:\left({U}_{{n}} \right)\:{decrease}\:{and}\:{converges}\:{to}\:\:{zero}. \\ $$$${we}\:{have}\:\:{e}^{−{u}_{{n}} } <{u}_{{n}\:} \:;\:\frac{\mathrm{1}}{{n}+\mathrm{1}}\leqslant\mathrm{1}\:\:{then}\:\:{u}_{{n}+\mathrm{1}} <{u}_{{n}} \: \\ $$$$\:\:\:\mid{u}_{{n}} \mid\leqslant\frac{\mathrm{1}}{{n}}\:\:{cause}\:\:{e}^{−{u}_{{n}} } <\mathrm{1}\:\:.{so}\:\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:{u}_{{n}} \:=\mathrm{0} \\ $$$$ \\ $$
Commented by mathmax by abdo last updated on 25/Apr/20
thankx sir
$${thankx}\:{sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *