Menu Close

Find-out-0-1-ln-1-t-t-2-dt-Then-deduce-the-value-of-A-n-1-1-n-n-1-2n-1-n-




Question Number 79128 by ~blr237~ last updated on 22/Jan/20
Find out ∫_0 ^1 ln(1−t+t^2 )dt  Then deduce the value of   A=Σ_(n=1) ^∞ (1/(n(n+1) (((2n+1)),(n) )))
Findout01ln(1t+t2)dtThendeducethevalueofA=n=11n(n+1)(2n+1n)
Commented by mathmax by abdo last updated on 24/Jan/20
let I =∫_0 ^1 ln(1−t +t^2 )dt  by parts   I =[t ln(1−t +t^2 )]_0 ^1  −∫_0 ^1  t ×((2t−1)/(t^2 −t+1))dt  =−∫_0 ^1  ((2t^2 −t)/(t^2 −t +1))dt =−∫_0 ^1  ((2(t^2 −t +1)+2t−2−t)/(t^2 −t +1))dt  =−2 −∫_0 ^1  ((t−2)/(t^2 −t +1))dt =−2−(1/2) ∫_0 ^1  ((2t−1−3)/(t^2 −t +1))dt  =−2 −(1/2)[ln(t^2 −t+1)]_0 ^1  +(3/2) ∫_0 ^1  (dt/((t−(1/2))^2  +(3/4)))  =−2+(3/2) ∫_0 ^1  (dt/((t−(1/2))^2  +(3/4)))  changement t−(1/2) =((√3)/2)u give  ∫_0 ^1  (dt/((t−(1/2))^2  +(3/4))) =(4/3)∫_(−(1/( (√3)))) ^(1/( (√3)))   (1/(u^2  +1))×((√3)/2)du =(2/( (√3))) ∫_(−(1/( (√3)))) ^(1/( (√3)))  (du/(1+u^2 ))  =(4/( (√3)))[arctan(u)]_0 ^(1/( (√3)))   =(4/( (√3)))×(π/6) =((2π)/(3(√3))) ⇒ I =−2 +(3/2)×((2π)/(3(√3))) =−2+(π/3)
letI=01ln(1t+t2)dtbypartsI=[tln(1t+t2)]0101t×2t1t2t+1dt=012t2tt2t+1dt=012(t2t+1)+2t2tt2t+1dt=201t2t2t+1dt=212012t13t2t+1dt=212[ln(t2t+1)]01+3201dt(t12)2+34=2+3201dt(t12)2+34changementt12=32ugive01dt(t12)2+34=4313131u2+1×32du=231313du1+u2=43[arctan(u)]013=43×π6=2π33I=2+32×2π33=2+π3
Commented by mathmax by abdo last updated on 24/Jan/20
I =−2+(π/( (√3)))
I=2+π3
Commented by mathmax by abdo last updated on 24/Jan/20
we have I =∫_0 ^1 ln(1−(t−t^2 ))dt    we have ∣t−t^2 ∣=∣t∣.∣1−t^2 ∣<1 ⇒  ln^′ (1−u) =−(1/(1−u)) =−Σ_(n=0) ^∞  u^n  ⇒ln(1−u)=−Σ_(n=0) ^∞ (u^(n+1) /(n+1))  =−Σ_(n=1) ^∞  (u^n /n) ⇒ln(1−(t−t^2 )) =−Σ_(n=1) ^∞ (((t−t^2 )^n )/n) ⇒  I =−Σ_(n=1) ^∞  (1/n) ∫_0 ^1 t^n (1−t)^n  dt  let remember that  B(p,q)=∫_0 ^1  x^(p−1) (1−x)^(q−1)  dx =((Γ(p).Γ(q))/(Γ(p+q))) ⇒  ∫_0 ^1 t^n (1−t)^n  dt =B(n+1,n+1) =((Γ(n+1)Γ(n+1))/(Γ(2n+2)))  =(((n!)^2 )/((2n+1)!))   (    Γ(m)=(m−1)!)   we have so I =−Σ_(n=1) ^∞  (1/n)×(((n!)^2 )/((2n+1)!))  A =Σ_(n=1) ^∞   (1/(n(n+1)C_(2n+1) ^n )) =Σ_(n=1) ^∞  (1/(n(n+1)(((2n+1)!)/(n!(n+1)!))))  =Σ_(n=1) ^∞  (((n!)^2 )/(n(2n+1)!)) ⇒ A =−I
wehaveI=01ln(1(tt2))dtwehavett2∣=∣t.1t2∣<1ln(1u)=11u=n=0unln(1u)=n=0un+1n+1=n=1unnln(1(tt2))=n=1(tt2)nnI=n=11n01tn(1t)ndtletrememberthatB(p,q)=01xp1(1x)q1dx=Γ(p).Γ(q)Γ(p+q)01tn(1t)ndt=B(n+1,n+1)=Γ(n+1)Γ(n+1)Γ(2n+2)=(n!)2(2n+1)!(Γ(m)=(m1)!)wehavesoI=n=11n×(n!)2(2n+1)!A=n=11n(n+1)C2n+1n=n=11n(n+1)(2n+1)!n!(n+1)!=n=1(n!)2n(2n+1)!A=I
Commented by mathmax by abdo last updated on 24/Jan/20
⇒ A =2−(π/( (√3))) .
A=2π3.
Answered by mind is power last updated on 22/Jan/20
=∫_0 ^1 ln((1−t+t^2 )dt  by part=[tln(1−t+t^2 )]_0 ^1 −∫_0 ^1 (((2t−1)t)/(1−t+t^2 ))dt  =−∫_0 ^1 ((2t^2 −t)/(1−t+t^2 ))dt−∫_0 ^1 (((2t^2 −2t+2)−1+t)/(t^2 −t+1))dt  =−2+∫_0 ^1 ((t−1)/(t^2 −t+1))=−2+∫_0 ^1 ((t−(1/2))/(t^2 −t+1))dt−(1/2)∫_0 ^1 (dt/((t−(1/2))^2 +(3/4)))  =−2−[_0 ^1 (1/( (√3)))arctan(((2t−1)/( (√3))))]=−2−(2/( (√3)))arctan((1/( (√3))))=−2−(π/(3(√3))).  ln(1−t+t^2 )=ln(1−(t−t^2 ))=−Σ_(n≥1) (((t−t^2 )^n )/n)  ∫_0 ^1 ln(1−t+t^2 )dt=∫_0 ^1 −Σ_(n≥1) (((t−t^2 )^n )/n)dt  =−∫_0 ^1 Σ_(n≥1) (((t−t^2 )^n )/n)dt=−Σ_(n≥1) ∫_0 ^1 ((t^n (1−t)^n )/n)dt  =−Σ_(n≥1) (1/n)β(n+1,n+1)=−Σ_(n≥1) ((n!.n!)/(n(2n+1)!))  =−Σ_(n≥1) (1/(n.(((2n+1)!(n+1))/(n!.(2n+1−n)!.n!))))=−Σ_(n≥1) (1/(n(n+1).(((2n+1)!)/(n!(n+1)!))))  =−Σ_(n≥1) (1/(n(n+1) (((2n+1)),(n) )))=−2−(π/(3(√3))) by first  ⇒A=2+(π/(3(√3)))
=01ln((1t+t2)dtbypart=[tln(1t+t2)]0101(2t1)t1t+t2dt=012t2t1t+t2dt01(2t22t+2)1+tt2t+1dt=2+01t1t2t+1=2+01t12t2t+1dt1201dt(t12)2+34=2[0113arctan(2t13)]=223arctan(13)=2π33.ln(1t+t2)=ln(1(tt2))=n1(tt2)nn01ln(1t+t2)dt=01n1(tt2)nndt=01n1(tt2)nndt=n101tn(1t)nndt=n11nβ(n+1,n+1)=n1n!.n!n(2n+1)!=n11n.(2n+1)!(n+1)n!.(2n+1n)!.n!=n11n(n+1).(2n+1)!n!(n+1)!=n11n(n+1)(2n+1n)=2π33byfirstA=2+π33
Commented by ~blr237~ last updated on 23/Jan/20
nice sir
nicesir
Commented by mind is power last updated on 23/Jan/20
thanx
thanx

Leave a Reply

Your email address will not be published. Required fields are marked *