Question Number 79128 by ~blr237~ last updated on 22/Jan/20

Commented by mathmax by abdo last updated on 24/Jan/20
![let I =∫_0 ^1 ln(1−t +t^2 )dt by parts I =[t ln(1−t +t^2 )]_0 ^1 −∫_0 ^1 t ×((2t−1)/(t^2 −t+1))dt =−∫_0 ^1 ((2t^2 −t)/(t^2 −t +1))dt =−∫_0 ^1 ((2(t^2 −t +1)+2t−2−t)/(t^2 −t +1))dt =−2 −∫_0 ^1 ((t−2)/(t^2 −t +1))dt =−2−(1/2) ∫_0 ^1 ((2t−1−3)/(t^2 −t +1))dt =−2 −(1/2)[ln(t^2 −t+1)]_0 ^1 +(3/2) ∫_0 ^1 (dt/((t−(1/2))^2 +(3/4))) =−2+(3/2) ∫_0 ^1 (dt/((t−(1/2))^2 +(3/4))) changement t−(1/2) =((√3)/2)u give ∫_0 ^1 (dt/((t−(1/2))^2 +(3/4))) =(4/3)∫_(−(1/( (√3)))) ^(1/( (√3))) (1/(u^2 +1))×((√3)/2)du =(2/( (√3))) ∫_(−(1/( (√3)))) ^(1/( (√3))) (du/(1+u^2 )) =(4/( (√3)))[arctan(u)]_0 ^(1/( (√3))) =(4/( (√3)))×(π/6) =((2π)/(3(√3))) ⇒ I =−2 +(3/2)×((2π)/(3(√3))) =−2+(π/3)](https://www.tinkutara.com/question/Q79268.png)
Commented by mathmax by abdo last updated on 24/Jan/20

Commented by mathmax by abdo last updated on 24/Jan/20

Commented by mathmax by abdo last updated on 24/Jan/20

Answered by mind is power last updated on 22/Jan/20
![=∫_0 ^1 ln((1−t+t^2 )dt by part=[tln(1−t+t^2 )]_0 ^1 −∫_0 ^1 (((2t−1)t)/(1−t+t^2 ))dt =−∫_0 ^1 ((2t^2 −t)/(1−t+t^2 ))dt−∫_0 ^1 (((2t^2 −2t+2)−1+t)/(t^2 −t+1))dt =−2+∫_0 ^1 ((t−1)/(t^2 −t+1))=−2+∫_0 ^1 ((t−(1/2))/(t^2 −t+1))dt−(1/2)∫_0 ^1 (dt/((t−(1/2))^2 +(3/4))) =−2−[_0 ^1 (1/( (√3)))arctan(((2t−1)/( (√3))))]=−2−(2/( (√3)))arctan((1/( (√3))))=−2−(π/(3(√3))). ln(1−t+t^2 )=ln(1−(t−t^2 ))=−Σ_(n≥1) (((t−t^2 )^n )/n) ∫_0 ^1 ln(1−t+t^2 )dt=∫_0 ^1 −Σ_(n≥1) (((t−t^2 )^n )/n)dt =−∫_0 ^1 Σ_(n≥1) (((t−t^2 )^n )/n)dt=−Σ_(n≥1) ∫_0 ^1 ((t^n (1−t)^n )/n)dt =−Σ_(n≥1) (1/n)β(n+1,n+1)=−Σ_(n≥1) ((n!.n!)/(n(2n+1)!)) =−Σ_(n≥1) (1/(n.(((2n+1)!(n+1))/(n!.(2n+1−n)!.n!))))=−Σ_(n≥1) (1/(n(n+1).(((2n+1)!)/(n!(n+1)!)))) =−Σ_(n≥1) (1/(n(n+1) (((2n+1)),(n) )))=−2−(π/(3(√3))) by first ⇒A=2+(π/(3(√3)))](https://www.tinkutara.com/question/Q79133.png)
Commented by ~blr237~ last updated on 23/Jan/20

Commented by mind is power last updated on 23/Jan/20
