Menu Close

Find-out-electric-field-on-an-axial-position-due-to-a-ring-having-linear-charge-density-0-cos-




Question Number 33400 by rahul 19 last updated on 15/Apr/18
Find out electric field on an axial   position due to a ring having linear  charge density 𝛌= λ_0  cos θ .
\boldsymbolFindoutelectricfieldonanaxialpositionduetoaringhavinglinearchargedensity\boldsymbolλ=λ0cosθ.
Commented by ajfour last updated on 16/Apr/18
Commented by ajfour last updated on 16/Apr/18
Commented by ajfour last updated on 16/Apr/18
E_⊥ ^� =(dQ/(4πε_0 r^2 ))((R/r))(−cos θj^� −sin θk^� )  [in diagram above i forgot to  include the   ((R/r))  factor  ]       =((λ_0 R^2 cos θdθ)/(4πε_0 r^3 )) (−cos θj^� −sin θk^� )  E_x =0  ,  E_z =0  E_y =−((λ_0 R^2 )/(4πε_0 (x^2 +R^2 )^(3/2) )) ∫_0 ^(  2π) cos^2 θdθ       =−((λ_0 R^2 )/(4πε_0 (x^2 +R^2 )^(3/2) ))×(1/2)∫_0 ^(  2π) (1+cos 2θ)dθ    =−((λ_0 R^2 )/(4πε_0 (x^2 +R^2 )^(3/2) ))×(1/2)(2π)  E = ∣E_y ∣=((𝛌_0 R^2 )/(4𝛆_0 (x^2 +R^2 )^(3/2) ))  .
E¯=dQ4πϵ0r2(Rr)(cosθj^sinθk^)[indiagramaboveiforgottoincludethe(Rr)factor]=λ0R2cosθdθ4πϵ0r3(cosθj^sinθk^)Ex=0,Ez=0Ey=λ0R24πϵ0(x2+R2)3/202πcos2θdθ=λ0R24πϵ0(x2+R2)3/2×1202π(1+cos2θ)dθ=λ0R24πϵ0(x2+R2)3/2×12(2π)E=Ey∣=\boldsymbolλ0R24\boldsymbolϵ0(\boldsymbolx2+\boldsymbolR2)3/2.
Commented by rahul 19 last updated on 16/Apr/18
thank u sir.
thankusir.thankusir.

Leave a Reply

Your email address will not be published. Required fields are marked *